Description: If A is a set then the class of cosets by A is a set. (Contributed by Peter Mazsa, 4-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | cossex | |- ( A e. V -> ,~ A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 | |- ,~ A = ( A o. `' A ) |
|
2 | cnvexg | |- ( A e. V -> `' A e. _V ) |
|
3 | coexg | |- ( ( A e. V /\ `' A e. _V ) -> ( A o. `' A ) e. _V ) |
|
4 | 2 3 | mpdan | |- ( A e. V -> ( A o. `' A ) e. _V ) |
5 | 1 4 | eqeltrid | |- ( A e. V -> ,~ A e. _V ) |