Metamath Proof Explorer


Theorem cotrclrtrcl

Description: Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cotrclrtrcl
|- ( t+ o. t* ) = t*

Proof

Step Hyp Ref Expression
1 cotrclrcl
 |-  ( t+ o. r* ) = t*
2 1 eqcomi
 |-  t* = ( t+ o. r* )
3 2 coeq2i
 |-  ( t+ o. t* ) = ( t+ o. ( t+ o. r* ) )
4 coass
 |-  ( ( t+ o. t+ ) o. r* ) = ( t+ o. ( t+ o. r* ) )
5 4 eqcomi
 |-  ( t+ o. ( t+ o. r* ) ) = ( ( t+ o. t+ ) o. r* )
6 cotrcltrcl
 |-  ( t+ o. t+ ) = t+
7 6 coeq1i
 |-  ( ( t+ o. t+ ) o. r* ) = ( t+ o. r* )
8 7 1 eqtri
 |-  ( ( t+ o. t+ ) o. r* ) = t*
9 5 8 eqtri
 |-  ( t+ o. ( t+ o. r* ) ) = t*
10 3 9 eqtri
 |-  ( t+ o. t* ) = t*