Metamath Proof Explorer


Theorem cortrclrtrcl

Description: The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrclrtrcl
|- ( t* o. t* ) = t*

Proof

Step Hyp Ref Expression
1 cotrclrcl
 |-  ( t+ o. r* ) = t*
2 1 eqcomi
 |-  t* = ( t+ o. r* )
3 2 coeq1i
 |-  ( t* o. t* ) = ( ( t+ o. r* ) o. t* )
4 coass
 |-  ( ( t+ o. r* ) o. t* ) = ( t+ o. ( r* o. t* ) )
5 corclrtrcl
 |-  ( r* o. t* ) = t*
6 5 coeq2i
 |-  ( t+ o. ( r* o. t* ) ) = ( t+ o. t* )
7 cotrclrtrcl
 |-  ( t+ o. t* ) = t*
8 6 7 eqtri
 |-  ( t+ o. ( r* o. t* ) ) = t*
9 4 8 eqtri
 |-  ( ( t+ o. r* ) o. t* ) = t*
10 3 9 eqtri
 |-  ( t* o. t* ) = t*