Description: The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cortrclrtrcl | |- ( t* o. t* ) = t* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotrclrcl | |- ( t+ o. r* ) = t* |
|
2 | 1 | eqcomi | |- t* = ( t+ o. r* ) |
3 | 2 | coeq1i | |- ( t* o. t* ) = ( ( t+ o. r* ) o. t* ) |
4 | coass | |- ( ( t+ o. r* ) o. t* ) = ( t+ o. ( r* o. t* ) ) |
|
5 | corclrtrcl | |- ( r* o. t* ) = t* |
|
6 | 5 | coeq2i | |- ( t+ o. ( r* o. t* ) ) = ( t+ o. t* ) |
7 | cotrclrtrcl | |- ( t+ o. t* ) = t* |
|
8 | 6 7 | eqtri | |- ( t+ o. ( r* o. t* ) ) = t* |
9 | 4 8 | eqtri | |- ( ( t+ o. r* ) o. t* ) = t* |
10 | 3 9 | eqtri | |- ( t* o. t* ) = t* |