Description: The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cortrclrtrcl | ⊢ ( t* ∘ t* ) = t* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotrclrcl | ⊢ ( t+ ∘ r* ) = t* | |
| 2 | 1 | eqcomi | ⊢ t* = ( t+ ∘ r* ) |
| 3 | 2 | coeq1i | ⊢ ( t* ∘ t* ) = ( ( t+ ∘ r* ) ∘ t* ) |
| 4 | coass | ⊢ ( ( t+ ∘ r* ) ∘ t* ) = ( t+ ∘ ( r* ∘ t* ) ) | |
| 5 | corclrtrcl | ⊢ ( r* ∘ t* ) = t* | |
| 6 | 5 | coeq2i | ⊢ ( t+ ∘ ( r* ∘ t* ) ) = ( t+ ∘ t* ) |
| 7 | cotrclrtrcl | ⊢ ( t+ ∘ t* ) = t* | |
| 8 | 6 7 | eqtri | ⊢ ( t+ ∘ ( r* ∘ t* ) ) = t* |
| 9 | 4 8 | eqtri | ⊢ ( ( t+ ∘ r* ) ∘ t* ) = t* |
| 10 | 3 9 | eqtri | ⊢ ( t* ∘ t* ) = t* |