Metamath Proof Explorer


Theorem cpcoll2d

Description: cpcolld with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses cpcoll2d.1
|- ( ph -> x e. A )
cpcoll2d.2
|- ( ph -> E. y x F y )
Assertion cpcoll2d
|- ( ph -> E. y e. ( F Coll A ) x F y )

Proof

Step Hyp Ref Expression
1 cpcoll2d.1
 |-  ( ph -> x e. A )
2 cpcoll2d.2
 |-  ( ph -> E. y x F y )
3 breq2
 |-  ( a = y -> ( x F a <-> x F y ) )
4 3 cbvexvw
 |-  ( E. a x F a <-> E. y x F y )
5 2 4 sylibr
 |-  ( ph -> E. a x F a )
6 1 adantr
 |-  ( ( ph /\ x F a ) -> x e. A )
7 simpr
 |-  ( ( ph /\ x F a ) -> x F a )
8 6 7 cpcolld
 |-  ( ( ph /\ x F a ) -> E. a e. ( F Coll A ) x F a )
9 3 cbvrexvw
 |-  ( E. a e. ( F Coll A ) x F a <-> E. y e. ( F Coll A ) x F y )
10 8 9 sylib
 |-  ( ( ph /\ x F a ) -> E. y e. ( F Coll A ) x F y )
11 5 10 exlimddv
 |-  ( ph -> E. y e. ( F Coll A ) x F y )