Step |
Hyp |
Ref |
Expression |
1 |
|
cpcoll2d.1 |
|- ( ph -> x e. A ) |
2 |
|
cpcoll2d.2 |
|- ( ph -> E. y x F y ) |
3 |
|
breq2 |
|- ( a = y -> ( x F a <-> x F y ) ) |
4 |
3
|
cbvexvw |
|- ( E. a x F a <-> E. y x F y ) |
5 |
2 4
|
sylibr |
|- ( ph -> E. a x F a ) |
6 |
1
|
adantr |
|- ( ( ph /\ x F a ) -> x e. A ) |
7 |
|
simpr |
|- ( ( ph /\ x F a ) -> x F a ) |
8 |
6 7
|
cpcolld |
|- ( ( ph /\ x F a ) -> E. a e. ( F Coll A ) x F a ) |
9 |
3
|
cbvrexvw |
|- ( E. a e. ( F Coll A ) x F a <-> E. y e. ( F Coll A ) x F y ) |
10 |
8 9
|
sylib |
|- ( ( ph /\ x F a ) -> E. y e. ( F Coll A ) x F y ) |
11 |
5 10
|
exlimddv |
|- ( ph -> E. y e. ( F Coll A ) x F y ) |