| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1coe0.k |
|- K = ( Base ` R ) |
| 2 |
|
cply1coe0.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
cply1coe0.p |
|- P = ( Poly1 ` R ) |
| 4 |
|
cply1coe0.b |
|- B = ( Base ` P ) |
| 5 |
|
cply1coe0.a |
|- A = ( algSc ` P ) |
| 6 |
3 5 1 2
|
coe1scl |
|- ( ( R e. Ring /\ S e. K ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) |
| 7 |
6
|
adantr |
|- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) |
| 8 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 9 |
8
|
neneqd |
|- ( n e. NN -> -. n = 0 ) |
| 10 |
9
|
adantl |
|- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> -. n = 0 ) |
| 11 |
10
|
adantr |
|- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. n = 0 ) |
| 12 |
|
eqeq1 |
|- ( k = n -> ( k = 0 <-> n = 0 ) ) |
| 13 |
12
|
notbid |
|- ( k = n -> ( -. k = 0 <-> -. n = 0 ) ) |
| 14 |
13
|
adantl |
|- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) ) |
| 15 |
11 14
|
mpbird |
|- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. k = 0 ) |
| 16 |
15
|
iffalsed |
|- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , S , .0. ) = .0. ) |
| 17 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 18 |
17
|
adantl |
|- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> n e. NN0 ) |
| 19 |
2
|
fvexi |
|- .0. e. _V |
| 20 |
19
|
a1i |
|- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> .0. e. _V ) |
| 21 |
7 16 18 20
|
fvmptd |
|- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |
| 22 |
21
|
ralrimiva |
|- ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |