| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmadugsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmadugsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmadugsum.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmadugsum.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 6 |  | cpmadugsum.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | cpmadugsum.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 8 |  | cpmadugsum.m |  |-  .x. = ( .s ` Y ) | 
						
							| 9 |  | cpmadugsum.r |  |-  .X. = ( .r ` Y ) | 
						
							| 10 |  | cpmadugsum.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 11 |  | cpmadugsum.g |  |-  .+ = ( +g ` Y ) | 
						
							| 12 |  | cpmadugsum.s |  |-  .- = ( -g ` Y ) | 
						
							| 13 |  | cpmadugsum.i |  |-  I = ( ( X .x. .1. ) .- ( T ` M ) ) | 
						
							| 14 |  | cpmadugsum.j |  |-  J = ( N maAdju P ) | 
						
							| 15 |  | cpmadugsum.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 16 |  | cpmadugsum.g2 |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | cpmadugsumfi |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) -> ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) | 
						
							| 19 | 1 2 3 4 9 12 15 5 16 6 8 7 11 | chfacfscmulgsum |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) -> ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 22 | 18 21 | eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) ) -> ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) -> ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) ) | 
						
							| 24 | 23 | reximdvva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( ( Y gsum ( i e. ( 1 ... s ) |-> ( ( i .^ X ) .x. ( ( T ` ( b ` ( i - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` i ) ) ) ) ) ) ) .+ ( ( ( ( s + 1 ) .^ X ) .x. ( T ` ( b ` s ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) ) | 
						
							| 25 | 17 24 | mpd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |