| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmadugsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmadugsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmadugsum.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmadugsum.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 6 |  | cpmadugsum.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | cpmadugsum.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 8 |  | cpmadugsum.m |  |-  .x. = ( .s ` Y ) | 
						
							| 9 |  | cpmadugsum.r |  |-  .X. = ( .r ` Y ) | 
						
							| 10 |  | cpmadugsum.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 11 |  | cpmadugsum.g |  |-  .+ = ( +g ` Y ) | 
						
							| 12 |  | cpmadugsum.s |  |-  .- = ( -g ` Y ) | 
						
							| 13 |  | cpmadugsum.i |  |-  I = ( ( X .x. .1. ) .- ( T ` M ) ) | 
						
							| 14 |  | cpmadugsum.j |  |-  J = ( N maAdju P ) | 
						
							| 15 |  | cpmadugsum.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 16 |  | cpmadugsum.g2 |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 17 |  | cpmidgsum2.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 18 |  | cpmidgsum2.k |  |-  K = ( C ` M ) | 
						
							| 19 |  | cpmidgsum2.h |  |-  H = ( K .x. .1. ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | cpmadugsum |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 21 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 22 | 21 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 24 | 3 4 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring ) | 
						
							| 25 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 26 | 23 24 25 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> Y e. Grp ) | 
						
							| 27 | 3 4 | pmatlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. LMod ) | 
						
							| 28 | 21 27 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> Y e. LMod ) | 
						
							| 29 | 21 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> R e. Ring ) | 
						
							| 30 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 31 | 6 3 30 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 32 | 29 31 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` P ) ) | 
						
							| 33 | 3 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 34 | 4 | matsca2 |  |-  ( ( N e. Fin /\ P e. CRing ) -> P = ( Scalar ` Y ) ) | 
						
							| 35 | 33 34 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> P = ( Scalar ` Y ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( Base ` P ) = ( Base ` ( Scalar ` Y ) ) ) | 
						
							| 37 | 32 36 | eleqtrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` ( Scalar ` Y ) ) ) | 
						
							| 38 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 39 | 38 10 | ringidcl |  |-  ( Y e. Ring -> .1. e. ( Base ` Y ) ) | 
						
							| 40 | 22 24 39 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> .1. e. ( Base ` Y ) ) | 
						
							| 41 |  | eqid |  |-  ( Scalar ` Y ) = ( Scalar ` Y ) | 
						
							| 42 |  | eqid |  |-  ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) | 
						
							| 43 | 38 41 8 42 | lmodvscl |  |-  ( ( Y e. LMod /\ X e. ( Base ` ( Scalar ` Y ) ) /\ .1. e. ( Base ` Y ) ) -> ( X .x. .1. ) e. ( Base ` Y ) ) | 
						
							| 44 | 28 37 40 43 | syl3anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( X .x. .1. ) e. ( Base ` Y ) ) | 
						
							| 45 | 44 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Y ) ) | 
						
							| 46 | 5 1 2 3 4 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 47 | 21 46 | syl3an2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 48 | 38 12 | grpsubcl |  |-  ( ( Y e. Grp /\ ( X .x. .1. ) e. ( Base ` Y ) /\ ( T ` M ) e. ( Base ` Y ) ) -> ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 49 | 26 45 47 48 | syl3anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 50 | 33 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) | 
						
							| 51 |  | eqid |  |-  ( N maDet P ) = ( N maDet P ) | 
						
							| 52 | 4 38 14 51 10 9 8 | madurid |  |-  ( ( ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` Y ) /\ P e. CRing ) -> ( ( ( X .x. .1. ) .- ( T ` M ) ) .X. ( J ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) = ( ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) .x. .1. ) ) | 
						
							| 53 | 49 50 52 | syl2anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( X .x. .1. ) .- ( T ` M ) ) .X. ( J ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) = ( ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) .x. .1. ) ) | 
						
							| 54 |  | id |  |-  ( I = ( ( X .x. .1. ) .- ( T ` M ) ) -> I = ( ( X .x. .1. ) .- ( T ` M ) ) ) | 
						
							| 55 |  | fveq2 |  |-  ( I = ( ( X .x. .1. ) .- ( T ` M ) ) -> ( J ` I ) = ( J ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 56 | 54 55 | oveq12d |  |-  ( I = ( ( X .x. .1. ) .- ( T ` M ) ) -> ( I .X. ( J ` I ) ) = ( ( ( X .x. .1. ) .- ( T ` M ) ) .X. ( J ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) ) | 
						
							| 57 | 13 56 | mp1i |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( ( X .x. .1. ) .- ( T ` M ) ) .X. ( J ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) ) | 
						
							| 58 | 17 1 2 3 4 51 12 6 8 5 10 | chpmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 59 | 18 58 | eqtrid |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( K .x. .1. ) = ( ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) .x. .1. ) ) | 
						
							| 61 | 19 60 | eqtrid |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) .x. .1. ) ) | 
						
							| 62 | 53 57 61 | 3eqtr4rd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( I .X. ( J ` I ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> H = ( I .X. ( J ` I ) ) ) | 
						
							| 64 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 65 | 63 64 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> H = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) -> H = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) ) | 
						
							| 67 | 66 | reximdv |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) -> E. b e. ( B ^m ( 0 ... s ) ) H = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) ) | 
						
							| 68 | 67 | reximdv |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( I .X. ( J ` I ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) H = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) ) | 
						
							| 69 | 20 68 | mpd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) H = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |