| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madurid.a |
|- A = ( N Mat R ) |
| 2 |
|
madurid.b |
|- B = ( Base ` A ) |
| 3 |
|
madurid.j |
|- J = ( N maAdju R ) |
| 4 |
|
madurid.d |
|- D = ( N maDet R ) |
| 5 |
|
madurid.i |
|- .1. = ( 1r ` A ) |
| 6 |
|
madurid.t |
|- .x. = ( .r ` A ) |
| 7 |
|
madurid.s |
|- .xb = ( .s ` A ) |
| 8 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
|
simpr |
|- ( ( M e. B /\ R e. CRing ) -> R e. CRing ) |
| 12 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 13 |
12
|
simpld |
|- ( M e. B -> N e. Fin ) |
| 14 |
13
|
adantr |
|- ( ( M e. B /\ R e. CRing ) -> N e. Fin ) |
| 15 |
1 9 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 16 |
15
|
adantr |
|- ( ( M e. B /\ R e. CRing ) -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 17 |
1 3 2
|
maduf |
|- ( R e. CRing -> J : B --> B ) |
| 18 |
17
|
adantl |
|- ( ( M e. B /\ R e. CRing ) -> J : B --> B ) |
| 19 |
|
simpl |
|- ( ( M e. B /\ R e. CRing ) -> M e. B ) |
| 20 |
18 19
|
ffvelcdmd |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` M ) e. B ) |
| 21 |
1 9 2
|
matbas2i |
|- ( ( J ` M ) e. B -> ( J ` M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 23 |
8 9 10 11 14 14 14 16 22
|
mamuval |
|- ( ( M e. B /\ R e. CRing ) -> ( M ( R maMul <. N , N , N >. ) ( J ` M ) ) = ( a e. N , b e. N |-> ( R gsum ( c e. N |-> ( ( a M c ) ( .r ` R ) ( c ( J ` M ) b ) ) ) ) ) ) |
| 24 |
1 8
|
matmulr |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 25 |
13 24
|
sylan |
|- ( ( M e. B /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 26 |
25 6
|
eqtr4di |
|- ( ( M e. B /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = .x. ) |
| 27 |
26
|
oveqd |
|- ( ( M e. B /\ R e. CRing ) -> ( M ( R maMul <. N , N , N >. ) ( J ` M ) ) = ( M .x. ( J ` M ) ) ) |
| 28 |
|
simp1l |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> M e. B ) |
| 29 |
|
simp1r |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> R e. CRing ) |
| 30 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 31 |
16 30
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ c e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 34 |
|
simpl2 |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ c e. N ) -> a e. N ) |
| 35 |
|
simpr |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ c e. N ) -> c e. N ) |
| 36 |
33 34 35
|
fovcdmd |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ c e. N ) -> ( a M c ) e. ( Base ` R ) ) |
| 37 |
|
simp3 |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> b e. N ) |
| 38 |
1 3 2 4 10 9 28 29 36 37
|
madugsum |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> ( R gsum ( c e. N |-> ( ( a M c ) ( .r ` R ) ( c ( J ` M ) b ) ) ) ) = ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) ) |
| 39 |
|
iftrue |
|- ( a = b -> if ( a = b , ( D ` M ) , ( 0g ` R ) ) = ( D ` M ) ) |
| 40 |
39
|
adantl |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> if ( a = b , ( D ` M ) , ( 0g ` R ) ) = ( D ` M ) ) |
| 41 |
31
|
ffnd |
|- ( ( M e. B /\ R e. CRing ) -> M Fn ( N X. N ) ) |
| 42 |
|
fnov |
|- ( M Fn ( N X. N ) <-> M = ( d e. N , c e. N |-> ( d M c ) ) ) |
| 43 |
41 42
|
sylib |
|- ( ( M e. B /\ R e. CRing ) -> M = ( d e. N , c e. N |-> ( d M c ) ) ) |
| 44 |
43
|
adantr |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> M = ( d e. N , c e. N |-> ( d M c ) ) ) |
| 45 |
|
equtr2 |
|- ( ( a = b /\ d = b ) -> a = d ) |
| 46 |
45
|
oveq1d |
|- ( ( a = b /\ d = b ) -> ( a M c ) = ( d M c ) ) |
| 47 |
46
|
ifeq1da |
|- ( a = b -> if ( d = b , ( a M c ) , ( d M c ) ) = if ( d = b , ( d M c ) , ( d M c ) ) ) |
| 48 |
|
ifid |
|- if ( d = b , ( d M c ) , ( d M c ) ) = ( d M c ) |
| 49 |
47 48
|
eqtrdi |
|- ( a = b -> if ( d = b , ( a M c ) , ( d M c ) ) = ( d M c ) ) |
| 50 |
49
|
adantl |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> if ( d = b , ( a M c ) , ( d M c ) ) = ( d M c ) ) |
| 51 |
50
|
mpoeq3dv |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) = ( d e. N , c e. N |-> ( d M c ) ) ) |
| 52 |
44 51
|
eqtr4d |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> M = ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) |
| 53 |
52
|
fveq2d |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> ( D ` M ) = ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) ) |
| 54 |
40 53
|
eqtr2d |
|- ( ( ( M e. B /\ R e. CRing ) /\ a = b ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) = if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) |
| 55 |
54
|
3ad2antl1 |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ a = b ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) = if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) |
| 56 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 57 |
|
simpl1r |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> R e. CRing ) |
| 58 |
14
|
3ad2ant1 |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> N e. Fin ) |
| 59 |
58
|
adantr |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> N e. Fin ) |
| 60 |
32
|
ad2antrr |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ c e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 61 |
|
simpll2 |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ c e. N ) -> a e. N ) |
| 62 |
|
simpr |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ c e. N ) -> c e. N ) |
| 63 |
60 61 62
|
fovcdmd |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ c e. N ) -> ( a M c ) e. ( Base ` R ) ) |
| 64 |
32
|
adantr |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 65 |
64
|
fovcdmda |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ ( d e. N /\ c e. N ) ) -> ( d M c ) e. ( Base ` R ) ) |
| 66 |
65
|
3impb |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ d e. N /\ c e. N ) -> ( d M c ) e. ( Base ` R ) ) |
| 67 |
|
simpl3 |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> b e. N ) |
| 68 |
|
simpl2 |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> a e. N ) |
| 69 |
|
neqne |
|- ( -. a = b -> a =/= b ) |
| 70 |
69
|
necomd |
|- ( -. a = b -> b =/= a ) |
| 71 |
70
|
adantl |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> b =/= a ) |
| 72 |
4 9 56 57 59 63 66 67 68 71
|
mdetralt2 |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , if ( d = a , ( a M c ) , ( d M c ) ) ) ) ) = ( 0g ` R ) ) |
| 73 |
|
ifid |
|- if ( d = a , ( d M c ) , ( d M c ) ) = ( d M c ) |
| 74 |
|
oveq1 |
|- ( d = a -> ( d M c ) = ( a M c ) ) |
| 75 |
74
|
adantl |
|- ( ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) /\ d = a ) -> ( d M c ) = ( a M c ) ) |
| 76 |
75
|
ifeq1da |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> if ( d = a , ( d M c ) , ( d M c ) ) = if ( d = a , ( a M c ) , ( d M c ) ) ) |
| 77 |
73 76
|
eqtr3id |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> ( d M c ) = if ( d = a , ( a M c ) , ( d M c ) ) ) |
| 78 |
77
|
ifeq2d |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> if ( d = b , ( a M c ) , ( d M c ) ) = if ( d = b , ( a M c ) , if ( d = a , ( a M c ) , ( d M c ) ) ) ) |
| 79 |
78
|
mpoeq3dv |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) = ( d e. N , c e. N |-> if ( d = b , ( a M c ) , if ( d = a , ( a M c ) , ( d M c ) ) ) ) ) |
| 80 |
79
|
fveq2d |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) = ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , if ( d = a , ( a M c ) , ( d M c ) ) ) ) ) ) |
| 81 |
|
iffalse |
|- ( -. a = b -> if ( a = b , ( D ` M ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 82 |
81
|
adantl |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> if ( a = b , ( D ` M ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 83 |
72 80 82
|
3eqtr4d |
|- ( ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) /\ -. a = b ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) = if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) |
| 84 |
55 83
|
pm2.61dan |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> ( D ` ( d e. N , c e. N |-> if ( d = b , ( a M c ) , ( d M c ) ) ) ) = if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) |
| 85 |
38 84
|
eqtrd |
|- ( ( ( M e. B /\ R e. CRing ) /\ a e. N /\ b e. N ) -> ( R gsum ( c e. N |-> ( ( a M c ) ( .r ` R ) ( c ( J ` M ) b ) ) ) ) = if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) |
| 86 |
85
|
mpoeq3dva |
|- ( ( M e. B /\ R e. CRing ) -> ( a e. N , b e. N |-> ( R gsum ( c e. N |-> ( ( a M c ) ( .r ` R ) ( c ( J ` M ) b ) ) ) ) ) = ( a e. N , b e. N |-> if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) ) |
| 87 |
5
|
oveq2i |
|- ( ( D ` M ) .xb .1. ) = ( ( D ` M ) .xb ( 1r ` A ) ) |
| 88 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 89 |
88
|
adantl |
|- ( ( M e. B /\ R e. CRing ) -> R e. Ring ) |
| 90 |
4 1 2 9
|
mdetf |
|- ( R e. CRing -> D : B --> ( Base ` R ) ) |
| 91 |
90
|
adantl |
|- ( ( M e. B /\ R e. CRing ) -> D : B --> ( Base ` R ) ) |
| 92 |
91 19
|
ffvelcdmd |
|- ( ( M e. B /\ R e. CRing ) -> ( D ` M ) e. ( Base ` R ) ) |
| 93 |
1 9 7 56
|
matsc |
|- ( ( N e. Fin /\ R e. Ring /\ ( D ` M ) e. ( Base ` R ) ) -> ( ( D ` M ) .xb ( 1r ` A ) ) = ( a e. N , b e. N |-> if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) ) |
| 94 |
14 89 92 93
|
syl3anc |
|- ( ( M e. B /\ R e. CRing ) -> ( ( D ` M ) .xb ( 1r ` A ) ) = ( a e. N , b e. N |-> if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) ) |
| 95 |
87 94
|
eqtrid |
|- ( ( M e. B /\ R e. CRing ) -> ( ( D ` M ) .xb .1. ) = ( a e. N , b e. N |-> if ( a = b , ( D ` M ) , ( 0g ` R ) ) ) ) |
| 96 |
86 95
|
eqtr4d |
|- ( ( M e. B /\ R e. CRing ) -> ( a e. N , b e. N |-> ( R gsum ( c e. N |-> ( ( a M c ) ( .r ` R ) ( c ( J ` M ) b ) ) ) ) ) = ( ( D ` M ) .xb .1. ) ) |
| 97 |
23 27 96
|
3eqtr3d |
|- ( ( M e. B /\ R e. CRing ) -> ( M .x. ( J ` M ) ) = ( ( D ` M ) .xb .1. ) ) |