Metamath Proof Explorer


Theorem matrcl

Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matrcl.a
|- A = ( N Mat R )
matrcl.b
|- B = ( Base ` A )
Assertion matrcl
|- ( X e. B -> ( N e. Fin /\ R e. _V ) )

Proof

Step Hyp Ref Expression
1 matrcl.a
 |-  A = ( N Mat R )
2 matrcl.b
 |-  B = ( Base ` A )
3 n0i
 |-  ( X e. B -> -. B = (/) )
4 df-mat
 |-  Mat = ( a e. Fin , b e. _V |-> ( ( b freeLMod ( a X. a ) ) sSet <. ( .r ` ndx ) , ( b maMul <. a , a , a >. ) >. ) )
5 4 mpondm0
 |-  ( -. ( N e. Fin /\ R e. _V ) -> ( N Mat R ) = (/) )
6 1 5 eqtrid
 |-  ( -. ( N e. Fin /\ R e. _V ) -> A = (/) )
7 6 fveq2d
 |-  ( -. ( N e. Fin /\ R e. _V ) -> ( Base ` A ) = ( Base ` (/) ) )
8 base0
 |-  (/) = ( Base ` (/) )
9 7 2 8 3eqtr4g
 |-  ( -. ( N e. Fin /\ R e. _V ) -> B = (/) )
10 3 9 nsyl2
 |-  ( X e. B -> ( N e. Fin /\ R e. _V ) )