Metamath Proof Explorer


Theorem matrcl

Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matrcl.a A=NMatR
matrcl.b B=BaseA
Assertion matrcl XBNFinRV

Proof

Step Hyp Ref Expression
1 matrcl.a A=NMatR
2 matrcl.b B=BaseA
3 n0i XB¬B=
4 df-mat Mat=aFin,bVbfreeLModa×asSetndxbmaMulaaa
5 4 mpondm0 ¬NFinRVNMatR=
6 1 5 eqtrid ¬NFinRVA=
7 6 fveq2d ¬NFinRVBaseA=Base
8 base0 =Base
9 7 2 8 3eqtr4g ¬NFinRVB=
10 3 9 nsyl2 XBNFinRV