Metamath Proof Explorer


Theorem matbas

Description: The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matbas.a A=NMatR
matbas.g G=RfreeLModN×N
Assertion matbas NFinRVBaseG=BaseA

Proof

Step Hyp Ref Expression
1 matbas.a A=NMatR
2 matbas.g G=RfreeLModN×N
3 baseid Base=SlotBasendx
4 basendxnmulrndx Basendxndx
5 3 4 setsnid BaseG=BaseGsSetndxRmaMulNNN
6 eqid RmaMulNNN=RmaMulNNN
7 1 2 6 matval NFinRVA=GsSetndxRmaMulNNN
8 7 fveq2d NFinRVBaseA=BaseGsSetndxRmaMulNNN
9 5 8 eqtr4id NFinRVBaseG=BaseA