| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madurid.a |
|- A = ( N Mat R ) |
| 2 |
|
madurid.b |
|- B = ( Base ` A ) |
| 3 |
|
madurid.j |
|- J = ( N maAdju R ) |
| 4 |
|
madurid.d |
|- D = ( N maDet R ) |
| 5 |
|
madurid.i |
|- .1. = ( 1r ` A ) |
| 6 |
|
madurid.t |
|- .x. = ( .r ` A ) |
| 7 |
|
madurid.s |
|- .xb = ( .s ` A ) |
| 8 |
|
simpr |
|- ( ( M e. B /\ R e. CRing ) -> R e. CRing ) |
| 9 |
1 3 2
|
maduf |
|- ( R e. CRing -> J : B --> B ) |
| 10 |
9
|
ffvelcdmda |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` M ) e. B ) |
| 11 |
10
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` M ) e. B ) |
| 12 |
|
simpl |
|- ( ( M e. B /\ R e. CRing ) -> M e. B ) |
| 13 |
1 2 6
|
mattposm |
|- ( ( R e. CRing /\ ( J ` M ) e. B /\ M e. B ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) |
| 14 |
8 11 12 13
|
syl3anc |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) |
| 15 |
1 3 2
|
madutpos |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) = tpos ( J ` M ) ) |
| 16 |
15
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` tpos M ) = tpos ( J ` M ) ) |
| 17 |
16
|
oveq2d |
|- ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( tpos M .x. tpos ( J ` M ) ) ) |
| 18 |
1 2
|
mattposcl |
|- ( M e. B -> tpos M e. B ) |
| 19 |
1 2 3 4 5 6 7
|
madurid |
|- ( ( tpos M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) |
| 20 |
18 19
|
sylan |
|- ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) |
| 21 |
14 17 20
|
3eqtr2d |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( ( D ` tpos M ) .xb .1. ) ) |
| 22 |
21
|
tposeqd |
|- ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = tpos ( ( D ` tpos M ) .xb .1. ) ) |
| 23 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 24 |
23
|
simpld |
|- ( M e. B -> N e. Fin ) |
| 25 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 26 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 27 |
24 25 26
|
syl2an |
|- ( ( M e. B /\ R e. CRing ) -> A e. Ring ) |
| 28 |
2 6
|
ringcl |
|- ( ( A e. Ring /\ ( J ` M ) e. B /\ M e. B ) -> ( ( J ` M ) .x. M ) e. B ) |
| 29 |
27 11 12 28
|
syl3anc |
|- ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) e. B ) |
| 30 |
1 2
|
mattpostpos |
|- ( ( ( J ` M ) .x. M ) e. B -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) |
| 31 |
29 30
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) |
| 32 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 33 |
4 1 2 32
|
mdetf |
|- ( R e. CRing -> D : B --> ( Base ` R ) ) |
| 34 |
33
|
adantl |
|- ( ( M e. B /\ R e. CRing ) -> D : B --> ( Base ` R ) ) |
| 35 |
18
|
adantr |
|- ( ( M e. B /\ R e. CRing ) -> tpos M e. B ) |
| 36 |
34 35
|
ffvelcdmd |
|- ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) e. ( Base ` R ) ) |
| 37 |
2 5
|
ringidcl |
|- ( A e. Ring -> .1. e. B ) |
| 38 |
27 37
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> .1. e. B ) |
| 39 |
1 2 32 7
|
mattposvs |
|- ( ( ( D ` tpos M ) e. ( Base ` R ) /\ .1. e. B ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) |
| 40 |
36 38 39
|
syl2anc |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) |
| 41 |
4 1 2
|
mdettpos |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) |
| 42 |
41
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) = ( D ` M ) ) |
| 43 |
1 5
|
mattpos1 |
|- ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) |
| 44 |
24 25 43
|
syl2an |
|- ( ( M e. B /\ R e. CRing ) -> tpos .1. = .1. ) |
| 45 |
42 44
|
oveq12d |
|- ( ( M e. B /\ R e. CRing ) -> ( ( D ` tpos M ) .xb tpos .1. ) = ( ( D ` M ) .xb .1. ) ) |
| 46 |
40 45
|
eqtrd |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` M ) .xb .1. ) ) |
| 47 |
22 31 46
|
3eqtr3d |
|- ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) = ( ( D ` M ) .xb .1. ) ) |