| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mattpos1.a |
|- A = ( N Mat R ) |
| 2 |
|
mattpos1.o |
|- .1. = ( 1r ` A ) |
| 3 |
|
eqid |
|- ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 4 |
3
|
tposmpo |
|- tpos ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 7 |
1 5 6
|
mat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 8 |
7
|
tposeqd |
|- ( ( N e. Fin /\ R e. Ring ) -> tpos ( 1r ` A ) = tpos ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 9 |
1 5 6
|
mat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( j e. N , i e. N |-> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 10 |
|
equcom |
|- ( j = i <-> i = j ) |
| 11 |
10
|
a1i |
|- ( ( j e. N /\ i e. N ) -> ( j = i <-> i = j ) ) |
| 12 |
11
|
ifbid |
|- ( ( j e. N /\ i e. N ) -> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 13 |
12
|
mpoeq3ia |
|- ( j e. N , i e. N |-> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 14 |
9 13
|
eqtrdi |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 15 |
4 8 14
|
3eqtr4a |
|- ( ( N e. Fin /\ R e. Ring ) -> tpos ( 1r ` A ) = ( 1r ` A ) ) |
| 16 |
2
|
tposeqi |
|- tpos .1. = tpos ( 1r ` A ) |
| 17 |
15 16 2
|
3eqtr4g |
|- ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) |