Metamath Proof Explorer


Theorem mattpos1

Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses mattpos1.a A=NMatR
mattpos1.o 1˙=1A
Assertion mattpos1 NFinRRingtpos1˙=1˙

Proof

Step Hyp Ref Expression
1 mattpos1.a A=NMatR
2 mattpos1.o 1˙=1A
3 eqid iN,jNifi=j1R0R=iN,jNifi=j1R0R
4 3 tposmpo tposiN,jNifi=j1R0R=jN,iNifi=j1R0R
5 eqid 1R=1R
6 eqid 0R=0R
7 1 5 6 mat1 NFinRRing1A=iN,jNifi=j1R0R
8 7 tposeqd NFinRRingtpos1A=tposiN,jNifi=j1R0R
9 1 5 6 mat1 NFinRRing1A=jN,iNifj=i1R0R
10 equcom j=ii=j
11 10 a1i jNiNj=ii=j
12 11 ifbid jNiNifj=i1R0R=ifi=j1R0R
13 12 mpoeq3ia jN,iNifj=i1R0R=jN,iNifi=j1R0R
14 9 13 eqtrdi NFinRRing1A=jN,iNifi=j1R0R
15 4 8 14 3eqtr4a NFinRRingtpos1A=1A
16 2 tposeqi tpos1˙=tpos1A
17 15 16 2 3eqtr4g NFinRRingtpos1˙=1˙