| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minmar1fval.a |
|- A = ( N Mat R ) |
| 2 |
|
minmar1fval.b |
|- B = ( Base ` A ) |
| 3 |
|
minmar1fval.q |
|- Q = ( N minMatR1 R ) |
| 4 |
|
minmar1fval.o |
|- .1. = ( 1r ` R ) |
| 5 |
|
minmar1fval.z |
|- .0. = ( 0g ` R ) |
| 6 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
| 7 |
6 1
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = A ) |
| 8 |
7
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` A ) ) |
| 9 |
8 2
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
| 10 |
|
simpl |
|- ( ( n = N /\ r = R ) -> n = N ) |
| 11 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
| 12 |
11 4
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
| 13 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
| 14 |
13 5
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
| 15 |
12 14
|
ifeq12d |
|- ( r = R -> if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) = if ( j = l , .1. , .0. ) ) |
| 16 |
15
|
ifeq1d |
|- ( r = R -> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) = if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) |
| 17 |
16
|
adantl |
|- ( ( n = N /\ r = R ) -> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) = if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) |
| 18 |
10 10 17
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( i e. n , j e. n |-> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) ) = ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) |
| 19 |
10 10 18
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) ) ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) |
| 20 |
9 19
|
mpteq12dv |
|- ( ( n = N /\ r = R ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) ) ) ) = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) ) |
| 21 |
|
df-minmar1 |
|- minMatR1 = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , ( 1r ` r ) , ( 0g ` r ) ) , ( i m j ) ) ) ) ) ) |
| 22 |
2
|
fvexi |
|- B e. _V |
| 23 |
22
|
mptex |
|- ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) e. _V |
| 24 |
20 21 23
|
ovmpoa |
|- ( ( N e. _V /\ R e. _V ) -> ( N minMatR1 R ) = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) ) |
| 25 |
21
|
mpondm0 |
|- ( -. ( N e. _V /\ R e. _V ) -> ( N minMatR1 R ) = (/) ) |
| 26 |
|
mpt0 |
|- ( m e. (/) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) = (/) |
| 27 |
25 26
|
eqtr4di |
|- ( -. ( N e. _V /\ R e. _V ) -> ( N minMatR1 R ) = ( m e. (/) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) ) |
| 28 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 29 |
2 28
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
| 30 |
|
matbas0pc |
|- ( -. ( N e. _V /\ R e. _V ) -> ( Base ` ( N Mat R ) ) = (/) ) |
| 31 |
29 30
|
eqtrid |
|- ( -. ( N e. _V /\ R e. _V ) -> B = (/) ) |
| 32 |
31
|
mpteq1d |
|- ( -. ( N e. _V /\ R e. _V ) -> ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) = ( m e. (/) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) ) |
| 33 |
27 32
|
eqtr4d |
|- ( -. ( N e. _V /\ R e. _V ) -> ( N minMatR1 R ) = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) ) |
| 34 |
24 33
|
pm2.61i |
|- ( N minMatR1 R ) = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) |
| 35 |
3 34
|
eqtri |
|- Q = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) |