| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minmar1fval.a |
|- A = ( N Mat R ) |
| 2 |
|
minmar1fval.b |
|- B = ( Base ` A ) |
| 3 |
|
minmar1fval.q |
|- Q = ( N minMatR1 R ) |
| 4 |
|
minmar1fval.o |
|- .1. = ( 1r ` R ) |
| 5 |
|
minmar1fval.z |
|- .0. = ( 0g ` R ) |
| 6 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 7 |
6
|
simpld |
|- ( M e. B -> N e. Fin ) |
| 8 |
|
mpoexga |
|- ( ( N e. Fin /\ N e. Fin ) -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) e. _V ) |
| 9 |
7 7 8
|
syl2anc |
|- ( M e. B -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) e. _V ) |
| 10 |
|
oveq |
|- ( m = M -> ( i m j ) = ( i M j ) ) |
| 11 |
10
|
ifeq2d |
|- ( m = M -> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) = if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) |
| 12 |
11
|
mpoeq3dv |
|- ( m = M -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) = ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) |
| 13 |
12
|
mpoeq3dv |
|- ( m = M -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) ) |
| 14 |
1 2 3 4 5
|
minmar1fval |
|- Q = ( m e. B |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i m j ) ) ) ) ) |
| 15 |
13 14
|
fvmptg |
|- ( ( M e. B /\ ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) e. _V ) -> ( Q ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) ) |
| 16 |
9 15
|
mpdan |
|- ( M e. B -> ( Q ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) ) |