Metamath Proof Explorer


Theorem minmar1val0

Description: Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses minmar1fval.a A=NMatR
minmar1fval.b B=BaseA
minmar1fval.q Q=NminMatR1R
minmar1fval.o 1˙=1R
minmar1fval.z 0˙=0R
Assertion minmar1val0 MBQM=kN,lNiN,jNifi=kifj=l1˙0˙iMj

Proof

Step Hyp Ref Expression
1 minmar1fval.a A=NMatR
2 minmar1fval.b B=BaseA
3 minmar1fval.q Q=NminMatR1R
4 minmar1fval.o 1˙=1R
5 minmar1fval.z 0˙=0R
6 1 2 matrcl MBNFinRV
7 6 simpld MBNFin
8 mpoexga NFinNFinkN,lNiN,jNifi=kifj=l1˙0˙iMjV
9 7 7 8 syl2anc MBkN,lNiN,jNifi=kifj=l1˙0˙iMjV
10 oveq m=Mimj=iMj
11 10 ifeq2d m=Mifi=kifj=l1˙0˙imj=ifi=kifj=l1˙0˙iMj
12 11 mpoeq3dv m=MiN,jNifi=kifj=l1˙0˙imj=iN,jNifi=kifj=l1˙0˙iMj
13 12 mpoeq3dv m=MkN,lNiN,jNifi=kifj=l1˙0˙imj=kN,lNiN,jNifi=kifj=l1˙0˙iMj
14 1 2 3 4 5 minmar1fval Q=mBkN,lNiN,jNifi=kifj=l1˙0˙imj
15 13 14 fvmptg MBkN,lNiN,jNifi=kifj=l1˙0˙iMjVQM=kN,lNiN,jNifi=kifj=l1˙0˙iMj
16 9 15 mpdan MBQM=kN,lNiN,jNifi=kifj=l1˙0˙iMj