Metamath Proof Explorer
Table of Contents - 12.1. Topology
- Topological spaces
- Topologies
- Topologies on sets
- Topological spaces
- Topological bases
- ctb
- df-bases
- isbasisg
- isbasis2g
- isbasis3g
- basis1
- basis2
- fiinbas
- basdif0
- baspartn
- tgval
- tgval2
- eltg
- eltg2
- eltg2b
- eltg4i
- eltg3i
- eltg3
- tgval3
- tg1
- tg2
- bastg
- unitg
- tgss
- tgcl
- tgclb
- tgtopon
- topbas
- tgtop
- eltop
- eltop2
- eltop3
- fibas
- tgdom
- tgiun
- tgidm
- bastop
- tgtop11
- 0top
- en1top
- en2top
- tgss3
- tgss2
- basgen
- basgen2
- 2basgen
- tgfiss
- tgdif0
- bastop1
- bastop2
- Examples of topologies
- distop
- topnex
- distopon
- sn0topon
- sn0top
- indislem
- indistopon
- indistop
- indisuni
- fctop
- fctop2
- cctop
- ppttop
- pptbas
- epttop
- indistpsx
- indistps
- indistps2
- indistpsALT
- indistps2ALT
- distps
- Closure and interior
- ccld
- cnt
- ccl
- df-cld
- df-ntr
- df-cls
- fncld
- cldval
- ntrfval
- clsfval
- cldrcl
- iscld
- iscld2
- cldss
- cldss2
- cldopn
- isopn2
- opncld
- difopn
- topcld
- ntrval
- clsval
- 0cld
- iincld
- intcld
- uncld
- cldcls
- incld
- riincld
- iuncld
- unicld
- clscld
- clsf
- ntropn
- clsval2
- ntrval2
- ntrdif
- clsdif
- clsss
- ntrss
- sscls
- ntrss2
- ssntr
- clsss3
- ntrss3
- ntrin
- cmclsopn
- cmntrcld
- iscld3
- iscld4
- isopn3
- clsidm
- ntridm
- clstop
- ntrtop
- 0ntr
- clsss2
- elcls
- elcls2
- clsndisj
- ntrcls0
- ntreq0
- cldmre
- mrccls
- cls0
- ntr0
- isopn3i
- elcls3
- opncldf1
- opncldf2
- opncldf3
- isclo
- isclo2
- discld
- sn0cld
- indiscld
- mretopd
- toponmre
- cldmreon
- iscldtop
- mreclatdemoBAD
- Neighborhoods
- cnei
- df-nei
- neifval
- neif
- neiss2
- neival
- isnei
- neiint
- isneip
- neii1
- neisspw
- neii2
- neiss
- ssnei
- elnei
- 0nnei
- neips
- opnneissb
- opnssneib
- ssnei2
- neindisj
- opnneiss
- opnneip
- opnnei
- tpnei
- neiuni
- neindisj2
- topssnei
- innei
- opnneiid
- neissex
- 0nei
- neipeltop
- neiptopuni
- neiptoptop
- neiptopnei
- neiptopreu
- Limit points and perfect sets
- clp
- cperf
- df-lp
- df-perf
- lpfval
- lpval
- islp
- lpsscls
- lpss
- lpdifsn
- lpss3
- islp2
- islp3
- maxlp
- clslp
- islpi
- cldlp
- isperf
- isperf2
- isperf3
- perflp
- perfi
- perftop
- Subspace topologies
- restrcl
- restbas
- tgrest
- resttop
- resttopon
- restuni
- stoig
- restco
- restabs
- restin
- restuni2
- resttopon2
- rest0
- restsn
- restsn2
- restcld
- restcldi
- restcldr
- restopnb
- ssrest
- restopn2
- restdis
- restfpw
- neitr
- restcls
- restntr
- restlp
- restperf
- perfopn
- resstopn
- resstps
- Order topology
- ordtbaslem
- ordtval
- ordtuni
- ordtbas2
- ordtbas
- ordttopon
- ordtopn1
- ordtopn2
- ordtopn3
- ordtcld1
- ordtcld2
- ordtcld3
- ordttop
- ordtcnv
- ordtrest
- ordtrest2lem
- ordtrest2
- letopon
- letop
- letopuni
- xrstopn
- xrstps
- leordtvallem1
- leordtvallem2
- leordtval2
- leordtval
- iccordt
- iocpnfordt
- icomnfordt
- iooordt
- reordt
- lecldbas
- pnfnei
- mnfnei
- ordtrestixx
- ordtresticc
- Limits and continuity in topological spaces
- ccn
- ccnp
- clm
- df-cn
- df-cnp
- df-lm
- lmrel
- lmrcl
- lmfval
- cnfval
- cnpfval
- iscn
- cnpval
- iscnp
- iscn2
- iscnp2
- cntop1
- cntop2
- cnptop1
- cnptop2
- iscnp3
- cnprcl
- cnf
- cnpf
- cnpcl
- cnf2
- cnpf2
- cnprcl2
- tgcn
- tgcnp
- subbascn
- ssidcn
- cnpimaex
- idcn
- lmbr
- lmbr2
- lmbrf
- lmconst
- lmcvg
- iscnp4
- cnpnei
- cnima
- cnco
- cnpco
- cnclima
- iscncl
- cncls2i
- cnntri
- cnclsi
- cncls2
- cncls
- cnntr
- cnss1
- cnss2
- cncnpi
- cnsscnp
- cncnp
- cncnp2
- cnnei
- cnconst2
- cnconst
- cnrest
- cnrest2
- cnrest2r
- cnpresti
- cnprest
- cnprest2
- cndis
- cnindis
- cnpdis
- paste
- lmfpm
- lmfss
- lmcl
- lmss
- sslm
- lmres
- lmff
- lmcls
- lmcld
- lmcnp
- lmcn
- Separated spaces: T0, T1, T2 (Hausdorff) ...
- ct0
- ct1
- cha
- creg
- cnrm
- ccnrm
- cpnrm
- df-t0
- df-t1
- df-haus
- df-reg
- df-nrm
- df-cnrm
- df-pnrm
- ist0
- ist1
- ishaus
- iscnrm
- t0sep
- t0dist
- t1sncld
- t1ficld
- hausnei
- t0top
- t1top
- haustop
- isreg
- regtop
- regsep
- isnrm
- nrmtop
- cnrmtop
- iscnrm2
- ispnrm
- pnrmnrm
- pnrmtop
- pnrmcld
- pnrmopn
- ist0-2
- ist0-3
- cnt0
- ist1-2
- t1t0
- ist1-3
- cnt1
- ishaus2
- haust1
- hausnei2
- cnhaus
- nrmsep3
- nrmsep2
- nrmsep
- isnrm2
- isnrm3
- cnrmi
- cnrmnrm
- restcnrm
- resthauslem
- lpcls
- perfcls
- restt0
- restt1
- resthaus
- t1sep2
- t1sep
- sncld
- sshauslem
- sst0
- sst1
- sshaus
- regsep2
- isreg2
- dnsconst
- ordtt1
- lmmo
- lmfun
- dishaus
- ordthauslem
- ordthaus
- xrhaus
- Compactness
- ccmp
- df-cmp
- iscmp
- cmpcov
- cmpcov2
- cmpcovf
- cncmp
- fincmp
- 0cmp
- cmptop
- rncmp
- imacmp
- discmp
- cmpsublem
- cmpsub
- tgcmp
- cmpcld
- uncmp
- fiuncmp
- sscmp
- hauscmplem
- hauscmp
- cmpfi
- cmpfii
- Bolzano-Weierstrass theorem
- bwth
- Connectedness
- cconn
- df-conn
- isconn
- isconn2
- connclo
- conndisj
- conntop
- indisconn
- dfconn2
- connsuba
- connsub
- cnconn
- nconnsubb
- connsubclo
- connima
- conncn
- iunconnlem
- iunconn
- unconn
- clsconn
- conncompid
- conncompconn
- conncompss
- conncompcld
- conncompclo
- t1connperf
- First- and second-countability
- c1stc
- c2ndc
- df-1stc
- df-2ndc
- is1stc
- is1stc2
- 1stctop
- 1stcclb
- 1stcfb
- is2ndc
- 2ndctop
- 2ndci
- 2ndcsb
- 2ndcredom
- 2ndc1stc
- 1stcrestlem
- 1stcrest
- 2ndcrest
- 2ndcctbss
- 2ndcdisj
- 2ndcdisj2
- 2ndcomap
- 2ndcsep
- dis2ndc
- 1stcelcls
- 1stccnp
- 1stccn
- Local topological properties
- clly
- cnlly
- df-lly
- df-nlly
- islly
- isnlly
- llyeq
- nllyeq
- llytop
- nllytop
- llyi
- nllyi
- nlly2i
- llynlly
- llyssnlly
- llyss
- nllyss
- subislly
- restnlly
- restlly
- islly2
- llyrest
- nllyrest
- loclly
- llyidm
- nllyidm
- toplly
- topnlly
- hauslly
- hausnlly
- hausllycmp
- cldllycmp
- lly1stc
- dislly
- disllycmp
- dis1stc
- hausmapdom
- hauspwdom
- Refinements
- cref
- cptfin
- clocfin
- df-ref
- df-ptfin
- df-locfin
- refrel
- isref
- refbas
- refssex
- ssref
- refref
- reftr
- refun0
- isptfin
- islocfin
- finptfin
- ptfinfin
- finlocfin
- locfintop
- locfinbas
- locfinnei
- lfinpfin
- lfinun
- locfincmp
- unisngl
- dissnref
- dissnlocfin
- locfindis
- locfincf
- comppfsc
- Compactly generated spaces
- ckgen
- df-kgen
- kgenval
- elkgen
- kgeni
- kgentopon
- kgenuni
- kgenftop
- kgenf
- kgentop
- kgenss
- kgenhaus
- kgencmp
- kgencmp2
- kgenidm
- iskgen2
- iskgen3
- llycmpkgen2
- cmpkgen
- llycmpkgen
- 1stckgenlem
- 1stckgen
- kgen2ss
- kgencn
- kgencn2
- kgencn3
- kgen2cn
- Product topologies
- ctx
- cxko
- df-tx
- df-xko
- txval
- txuni2
- txbasex
- txbas
- eltx
- txtop
- ptval
- ptpjpre1
- elpt
- elptr
- elptr2
- ptbasid
- ptuni2
- ptbasin
- ptbasin2
- ptbas
- ptpjpre2
- ptbasfi
- pttop
- ptopn
- ptopn2
- xkotf
- xkobval
- xkoval
- xkotop
- xkoopn
- txtopi
- txtopon
- txuni
- txunii
- ptuni
- ptunimpt
- pttopon
- pttoponconst
- ptuniconst
- xkouni
- xkotopon
- ptval2
- txopn
- txcld
- txcls
- txss12
- txbasval
- neitx
- txcnpi
- tx1cn
- tx2cn
- ptpjcn
- ptpjopn
- ptcld
- ptcldmpt
- ptclsg
- ptcls
- dfac14lem
- dfac14
- xkoccn
- txcnp
- ptcnplem
- ptcnp
- upxp
- txcnmpt
- uptx
- txcn
- ptcn
- prdstopn
- prdstps
- pwstps
- txrest
- txdis
- txindislem
- txindis
- txdis1cn
- txlly
- txnlly
- pthaus
- ptrescn
- txtube
- txcmplem1
- txcmplem2
- txcmp
- txcmpb
- hausdiag
- hauseqlcld
- txhaus
- txlm
- lmcn2
- tx1stc
- tx2ndc
- txkgen
- xkohaus
- xkoptsub
- xkopt
- xkopjcn
- xkoco1cn
- xkoco2cn
- xkococnlem
- xkococn
- Continuous function-builders
- cnmptid
- cnmptc
- cnmpt11
- cnmpt11f
- cnmpt1t
- cnmpt12f
- cnmpt12
- cnmpt1st
- cnmpt2nd
- cnmpt2c
- cnmpt21
- cnmpt21f
- cnmpt2t
- cnmpt22
- cnmpt22f
- cnmpt1res
- cnmpt2res
- cnmptcom
- cnmptkc
- cnmptkp
- cnmptk1
- cnmpt1k
- cnmptkk
- xkofvcn
- cnmptk1p
- cnmptk2
- xkoinjcn
- cnmpt2k
- txconn
- imasnopn
- imasncld
- imasncls
- Quotient maps and quotient topology
- ckq
- df-kq
- qtopval
- qtopval2
- elqtop
- qtopres
- qtoptop2
- qtoptop
- elqtop2
- qtopuni
- elqtop3
- qtoptopon
- qtopid
- idqtop
- qtopcmplem
- qtopcmp
- qtopconn
- qtopkgen
- basqtop
- tgqtop
- qtopcld
- qtopcn
- qtopss
- qtopeu
- qtoprest
- qtopomap
- qtopcmap
- imastopn
- imastps
- qustps
- kqfval
- kqfeq
- kqffn
- kqval
- kqtopon
- kqid
- ist0-4
- kqfvima
- kqsat
- kqdisj
- kqcldsat
- kqopn
- kqcld
- kqt0lem
- isr0
- r0cld
- regr1lem
- regr1lem2
- kqreglem1
- kqreglem2
- kqnrmlem1
- kqnrmlem2
- kqtop
- kqt0
- kqf
- r0sep
- nrmr0reg
- regr1
- kqreg
- kqnrm
- Homeomorphisms
- chmeo
- chmph
- df-hmeo
- df-hmph
- hmeofn
- hmeofval
- ishmeo
- hmeocn
- hmeocnvcn
- hmeocnv
- hmeof1o2
- hmeof1o
- hmeoima
- hmeoopn
- hmeocld
- hmeocls
- hmeontr
- hmeoimaf1o
- hmeores
- hmeoco
- idhmeo
- hmeocnvb
- hmeoqtop
- hmph
- hmphi
- hmphtop
- hmphtop1
- hmphtop2
- hmphref
- hmphsym
- hmphtr
- hmpher
- hmphen
- hmphsymb
- haushmphlem
- cmphmph
- connhmph
- t0hmph
- t1hmph
- haushmph
- reghmph
- nrmhmph
- hmph0
- hmphdis
- hmphindis
- indishmph
- hmphen2
- cmphaushmeo
- ordthmeolem
- ordthmeo
- txhmeo
- txswaphmeolem
- txswaphmeo
- pt1hmeo
- ptuncnv
- ptunhmeo
- xpstopnlem1
- xpstps
- xpstopnlem2
- xpstopn
- ptcmpfi
- xkocnv
- xkohmeo
- qtopf1
- qtophmeo
- t0kq
- kqhmph
- ist1-5lem
- t1r0
- ist1-5
- ishaus3
- nrmreg
- reghaus
- nrmhaus