Step |
Hyp |
Ref |
Expression |
1 |
|
gsummatr01.p |
|
2 |
|
gsummatr01.r |
|
3 |
|
gsummatr01.0 |
|
4 |
|
gsummatr01.s |
|
5 |
|
eqidd |
|
6 |
|
eqeq1 |
|
7 |
6
|
adantr |
|
8 |
|
eqeq1 |
|
9 |
8
|
adantl |
|
10 |
9
|
ifbid |
|
11 |
|
oveq12 |
|
12 |
7 10 11
|
ifbieq12d |
|
13 |
|
eldifsni |
|
14 |
13
|
neneqd |
|
15 |
14
|
iffalsed |
|
16 |
15
|
adantl |
|
17 |
12 16
|
sylan9eqr |
|
18 |
|
eldifi |
|
19 |
18
|
adantl |
|
20 |
1 2
|
gsummatr01lem1 |
|
21 |
18 20
|
sylan2 |
|
22 |
|
ovexd |
|
23 |
5 17 19 21 22
|
ovmpod |
|
24 |
23
|
ex |
|
25 |
24
|
3ad2ant3 |
|
26 |
25
|
3ad2ant3 |
|
27 |
26
|
imp |
|
28 |
|
eqidd |
|
29 |
11
|
adantl |
|
30 |
|
eqidd |
|
31 |
|
simpr |
|
32 |
|
fveq1 |
|
33 |
32
|
eqeq1d |
|
34 |
33 2
|
elrab2 |
|
35 |
|
simpll |
|
36 |
|
eqid |
|
37 |
36 1
|
symgfv |
|
38 |
35 18 37
|
syl2an |
|
39 |
35
|
adantr |
|
40 |
|
simplrr |
|
41 |
18
|
adantl |
|
42 |
39 40 41
|
3jca |
|
43 |
|
simpllr |
|
44 |
13
|
adantl |
|
45 |
36 1
|
symgfvne |
|
46 |
42 43 44 45
|
syl3c |
|
47 |
38 46
|
jca |
|
48 |
47
|
exp42 |
|
49 |
34 48
|
sylbi |
|
50 |
49
|
3imp31 |
|
51 |
50
|
3ad2ant3 |
|
52 |
51
|
imp |
|
53 |
|
eldifsn |
|
54 |
52 53
|
sylibr |
|
55 |
|
ovexd |
|
56 |
|
nfv |
|
57 |
|
nfra1 |
|
58 |
|
nfcv |
|
59 |
58
|
nfel2 |
|
60 |
57 59
|
nfan |
|
61 |
|
nfv |
|
62 |
56 60 61
|
nf3an |
|
63 |
|
nfcv |
|
64 |
63
|
nfel2 |
|
65 |
62 64
|
nfan |
|
66 |
|
nfv |
|
67 |
|
nfra2w |
|
68 |
|
nfcv |
|
69 |
68
|
nfel2 |
|
70 |
67 69
|
nfan |
|
71 |
|
nfv |
|
72 |
66 70 71
|
nf3an |
|
73 |
|
nfcv |
|
74 |
73
|
nfel2 |
|
75 |
72 74
|
nfan |
|
76 |
|
nfcv |
|
77 |
|
nfcv |
|
78 |
|
nfcv |
|
79 |
|
nfcv |
|
80 |
28 29 30 31 54 55 65 75 76 77 78 79
|
ovmpodxf |
|
81 |
27 80
|
eqtr4d |
|