| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummatr01.p |
|
| 2 |
|
gsummatr01.r |
|
| 3 |
|
gsummatr01.0 |
|
| 4 |
|
gsummatr01.s |
|
| 5 |
|
eqidd |
|
| 6 |
|
eqeq1 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eqeq1 |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
ifbid |
|
| 11 |
|
oveq12 |
|
| 12 |
7 10 11
|
ifbieq12d |
|
| 13 |
|
eldifsni |
|
| 14 |
13
|
neneqd |
|
| 15 |
14
|
iffalsed |
|
| 16 |
15
|
adantl |
|
| 17 |
12 16
|
sylan9eqr |
|
| 18 |
|
eldifi |
|
| 19 |
18
|
adantl |
|
| 20 |
1 2
|
gsummatr01lem1 |
|
| 21 |
18 20
|
sylan2 |
|
| 22 |
|
ovexd |
|
| 23 |
5 17 19 21 22
|
ovmpod |
|
| 24 |
23
|
ex |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
26
|
imp |
|
| 28 |
|
eqidd |
|
| 29 |
11
|
adantl |
|
| 30 |
|
eqidd |
|
| 31 |
|
simpr |
|
| 32 |
|
fveq1 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
33 2
|
elrab2 |
|
| 35 |
|
simpll |
|
| 36 |
|
eqid |
|
| 37 |
36 1
|
symgfv |
|
| 38 |
35 18 37
|
syl2an |
|
| 39 |
35
|
adantr |
|
| 40 |
|
simplrr |
|
| 41 |
18
|
adantl |
|
| 42 |
39 40 41
|
3jca |
|
| 43 |
|
simpllr |
|
| 44 |
13
|
adantl |
|
| 45 |
36 1
|
symgfvne |
|
| 46 |
42 43 44 45
|
syl3c |
|
| 47 |
38 46
|
jca |
|
| 48 |
47
|
exp42 |
|
| 49 |
34 48
|
sylbi |
|
| 50 |
49
|
3imp31 |
|
| 51 |
50
|
3ad2ant3 |
|
| 52 |
51
|
imp |
|
| 53 |
|
eldifsn |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
|
ovexd |
|
| 56 |
|
nfv |
|
| 57 |
|
nfra1 |
|
| 58 |
|
nfcv |
|
| 59 |
58
|
nfel2 |
|
| 60 |
57 59
|
nfan |
|
| 61 |
|
nfv |
|
| 62 |
56 60 61
|
nf3an |
|
| 63 |
|
nfcv |
|
| 64 |
63
|
nfel2 |
|
| 65 |
62 64
|
nfan |
|
| 66 |
|
nfv |
|
| 67 |
|
nfra2w |
|
| 68 |
|
nfcv |
|
| 69 |
68
|
nfel2 |
|
| 70 |
67 69
|
nfan |
|
| 71 |
|
nfv |
|
| 72 |
66 70 71
|
nf3an |
|
| 73 |
|
nfcv |
|
| 74 |
73
|
nfel2 |
|
| 75 |
72 74
|
nfan |
|
| 76 |
|
nfcv |
|
| 77 |
|
nfcv |
|
| 78 |
|
nfcv |
|
| 79 |
|
nfcv |
|
| 80 |
28 29 30 31 54 55 65 75 76 77 78 79
|
ovmpodxf |
|
| 81 |
27 80
|
eqtr4d |
|