Metamath Proof Explorer


Theorem gsummatr01lem4

Description: Lemma 2 for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P = Base SymGrp N
gsummatr01.r R = r P | r K = L
gsummatr01.0 0 ˙ = 0 G
gsummatr01.s S = Base G
Assertion gsummatr01lem4 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n i N K , j N L i A j Q n

Proof

Step Hyp Ref Expression
1 gsummatr01.p P = Base SymGrp N
2 gsummatr01.r R = r P | r K = L
3 gsummatr01.0 0 ˙ = 0 G
4 gsummatr01.s S = Base G
5 eqidd Q R n N K i N , j N if i = K if j = L 0 ˙ B i A j = i N , j N if i = K if j = L 0 ˙ B i A j
6 eqeq1 i = n i = K n = K
7 6 adantr i = n j = Q n i = K n = K
8 eqeq1 j = Q n j = L Q n = L
9 8 adantl i = n j = Q n j = L Q n = L
10 9 ifbid i = n j = Q n if j = L 0 ˙ B = if Q n = L 0 ˙ B
11 oveq12 i = n j = Q n i A j = n A Q n
12 7 10 11 ifbieq12d i = n j = Q n if i = K if j = L 0 ˙ B i A j = if n = K if Q n = L 0 ˙ B n A Q n
13 eldifsni n N K n K
14 13 neneqd n N K ¬ n = K
15 14 iffalsed n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
16 15 adantl Q R n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
17 12 16 sylan9eqr Q R n N K i = n j = Q n if i = K if j = L 0 ˙ B i A j = n A Q n
18 eldifi n N K n N
19 18 adantl Q R n N K n N
20 1 2 gsummatr01lem1 Q R n N Q n N
21 18 20 sylan2 Q R n N K Q n N
22 ovexd Q R n N K n A Q n V
23 5 17 19 21 22 ovmpod Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
24 23 ex Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
25 24 3ad2ant3 K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
26 25 3ad2ant3 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
27 26 imp G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
28 eqidd G CMnd N Fin i N j N i A j S B S K N L N Q R n N K i N K , j N L i A j = i N K , j N L i A j
29 11 adantl G CMnd N Fin i N j N i A j S B S K N L N Q R n N K i = n j = Q n i A j = n A Q n
30 eqidd G CMnd N Fin i N j N i A j S B S K N L N Q R n N K i = n N L = N L
31 simpr G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n N K
32 fveq1 r = Q r K = Q K
33 32 eqeq1d r = Q r K = L Q K = L
34 33 2 elrab2 Q R Q P Q K = L
35 simpll Q P Q K = L L N K N Q P
36 eqid SymGrp N = SymGrp N
37 36 1 symgfv Q P n N Q n N
38 35 18 37 syl2an Q P Q K = L L N K N n N K Q n N
39 35 adantr Q P Q K = L L N K N n N K Q P
40 simplrr Q P Q K = L L N K N n N K K N
41 18 adantl Q P Q K = L L N K N n N K n N
42 39 40 41 3jca Q P Q K = L L N K N n N K Q P K N n N
43 simpllr Q P Q K = L L N K N n N K Q K = L
44 13 adantl Q P Q K = L L N K N n N K n K
45 36 1 symgfvne Q P K N n N Q K = L n K Q n L
46 42 43 44 45 syl3c Q P Q K = L L N K N n N K Q n L
47 38 46 jca Q P Q K = L L N K N n N K Q n N Q n L
48 47 exp42 Q P Q K = L L N K N n N K Q n N Q n L
49 34 48 sylbi Q R L N K N n N K Q n N Q n L
50 49 3imp31 K N L N Q R n N K Q n N Q n L
51 50 3ad2ant3 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K Q n N Q n L
52 51 imp G CMnd N Fin i N j N i A j S B S K N L N Q R n N K Q n N Q n L
53 eldifsn Q n N L Q n N Q n L
54 52 53 sylibr G CMnd N Fin i N j N i A j S B S K N L N Q R n N K Q n N L
55 ovexd G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n A Q n V
56 nfv i G CMnd N Fin
57 nfra1 i i N j N i A j S
58 nfcv _ i S
59 58 nfel2 i B S
60 57 59 nfan i i N j N i A j S B S
61 nfv i K N L N Q R
62 56 60 61 nf3an i G CMnd N Fin i N j N i A j S B S K N L N Q R
63 nfcv _ i N K
64 63 nfel2 i n N K
65 62 64 nfan i G CMnd N Fin i N j N i A j S B S K N L N Q R n N K
66 nfv j G CMnd N Fin
67 nfra2w j i N j N i A j S
68 nfcv _ j S
69 68 nfel2 j B S
70 67 69 nfan j i N j N i A j S B S
71 nfv j K N L N Q R
72 66 70 71 nf3an j G CMnd N Fin i N j N i A j S B S K N L N Q R
73 nfcv _ j N K
74 73 nfel2 j n N K
75 72 74 nfan j G CMnd N Fin i N j N i A j S B S K N L N Q R n N K
76 nfcv _ j n
77 nfcv _ i Q n
78 nfcv _ i n A Q n
79 nfcv _ j n A Q n
80 28 29 30 31 54 55 65 75 76 77 78 79 ovmpodxf G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N K , j N L i A j Q n = n A Q n
81 27 80 eqtr4d G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n i N K , j N L i A j Q n