Database
BASIC LINEAR ALGEBRA
The determinant
Laplace expansion of determinants (special case)
gsummatr01lem1
Next ⟩
gsummatr01lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsummatr01lem1
Description:
Lemma A for
gsummatr01
.
(Contributed by
AV
, 8-Jan-2019)
Ref
Expression
Hypotheses
gsummatr01.p
⊢
P
=
Base
SymGrp
⁡
N
gsummatr01.r
⊢
R
=
r
∈
P
|
r
⁡
K
=
L
Assertion
gsummatr01lem1
⊢
Q
∈
R
∧
X
∈
N
→
Q
⁡
X
∈
N
Proof
Step
Hyp
Ref
Expression
1
gsummatr01.p
⊢
P
=
Base
SymGrp
⁡
N
2
gsummatr01.r
⊢
R
=
r
∈
P
|
r
⁡
K
=
L
3
fveq1
⊢
r
=
Q
→
r
⁡
K
=
Q
⁡
K
4
3
eqeq1d
⊢
r
=
Q
→
r
⁡
K
=
L
↔
Q
⁡
K
=
L
5
4
2
elrab2
⊢
Q
∈
R
↔
Q
∈
P
∧
Q
⁡
K
=
L
6
5
simplbi
⊢
Q
∈
R
→
Q
∈
P
7
eqid
⊢
SymGrp
⁡
N
=
SymGrp
⁡
N
8
7
1
symgfv
⊢
Q
∈
P
∧
X
∈
N
→
Q
⁡
X
∈
N
9
6
8
sylan
⊢
Q
∈
R
∧
X
∈
N
→
Q
⁡
X
∈
N