Metamath Proof Explorer


Theorem gsummatr01lem1

Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P = Base SymGrp N
gsummatr01.r R = r P | r K = L
Assertion gsummatr01lem1 Q R X N Q X N

Proof

Step Hyp Ref Expression
1 gsummatr01.p P = Base SymGrp N
2 gsummatr01.r R = r P | r K = L
3 fveq1 r = Q r K = Q K
4 3 eqeq1d r = Q r K = L Q K = L
5 4 2 elrab2 Q R Q P Q K = L
6 5 simplbi Q R Q P
7 eqid SymGrp N = SymGrp N
8 7 1 symgfv Q P X N Q X N
9 6 8 sylan Q R X N Q X N