Metamath Proof Explorer


Theorem gsummatr01lem1

Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
gsummatr01.r 𝑅 = { 𝑟𝑃 ∣ ( 𝑟𝐾 ) = 𝐿 }
Assertion gsummatr01lem1 ( ( 𝑄𝑅𝑋𝑁 ) → ( 𝑄𝑋 ) ∈ 𝑁 )

Proof

Step Hyp Ref Expression
1 gsummatr01.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 gsummatr01.r 𝑅 = { 𝑟𝑃 ∣ ( 𝑟𝐾 ) = 𝐿 }
3 fveq1 ( 𝑟 = 𝑄 → ( 𝑟𝐾 ) = ( 𝑄𝐾 ) )
4 3 eqeq1d ( 𝑟 = 𝑄 → ( ( 𝑟𝐾 ) = 𝐿 ↔ ( 𝑄𝐾 ) = 𝐿 ) )
5 4 2 elrab2 ( 𝑄𝑅 ↔ ( 𝑄𝑃 ∧ ( 𝑄𝐾 ) = 𝐿 ) )
6 5 simplbi ( 𝑄𝑅𝑄𝑃 )
7 eqid ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 )
8 7 1 symgfv ( ( 𝑄𝑃𝑋𝑁 ) → ( 𝑄𝑋 ) ∈ 𝑁 )
9 6 8 sylan ( ( 𝑄𝑅𝑋𝑁 ) → ( 𝑄𝑋 ) ∈ 𝑁 )