Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummatr01.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
gsummatr01.r | ⊢ 𝑅 = { 𝑟 ∈ 𝑃 ∣ ( 𝑟 ‘ 𝐾 ) = 𝐿 } | ||
Assertion | gsummatr01lem1 | ⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummatr01.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
2 | gsummatr01.r | ⊢ 𝑅 = { 𝑟 ∈ 𝑃 ∣ ( 𝑟 ‘ 𝐾 ) = 𝐿 } | |
3 | fveq1 | ⊢ ( 𝑟 = 𝑄 → ( 𝑟 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) | |
4 | 3 | eqeq1d | ⊢ ( 𝑟 = 𝑄 → ( ( 𝑟 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
5 | 4 2 | elrab2 | ⊢ ( 𝑄 ∈ 𝑅 ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
6 | 5 | simplbi | ⊢ ( 𝑄 ∈ 𝑅 → 𝑄 ∈ 𝑃 ) |
7 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
8 | 7 1 | symgfv | ⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝑋 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) |
9 | 6 8 | sylan | ⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) |