Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummatr01.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| gsummatr01.r | |- R = { r e. P | ( r ` K ) = L } |
||
| Assertion | gsummatr01lem1 | |- ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummatr01.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | gsummatr01.r | |- R = { r e. P | ( r ` K ) = L } |
|
| 3 | fveq1 | |- ( r = Q -> ( r ` K ) = ( Q ` K ) ) |
|
| 4 | 3 | eqeq1d | |- ( r = Q -> ( ( r ` K ) = L <-> ( Q ` K ) = L ) ) |
| 5 | 4 2 | elrab2 | |- ( Q e. R <-> ( Q e. P /\ ( Q ` K ) = L ) ) |
| 6 | 5 | simplbi | |- ( Q e. R -> Q e. P ) |
| 7 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 8 | 7 1 | symgfv | |- ( ( Q e. P /\ X e. N ) -> ( Q ` X ) e. N ) |
| 9 | 6 8 | sylan | |- ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N ) |