Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummatr01.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
gsummatr01.r | |- R = { r e. P | ( r ` K ) = L } |
||
Assertion | gsummatr01lem1 | |- ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummatr01.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
2 | gsummatr01.r | |- R = { r e. P | ( r ` K ) = L } |
|
3 | fveq1 | |- ( r = Q -> ( r ` K ) = ( Q ` K ) ) |
|
4 | 3 | eqeq1d | |- ( r = Q -> ( ( r ` K ) = L <-> ( Q ` K ) = L ) ) |
5 | 4 2 | elrab2 | |- ( Q e. R <-> ( Q e. P /\ ( Q ` K ) = L ) ) |
6 | 5 | simplbi | |- ( Q e. R -> Q e. P ) |
7 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
8 | 7 1 | symgfv | |- ( ( Q e. P /\ X e. N ) -> ( Q ` X ) e. N ) |
9 | 6 8 | sylan | |- ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N ) |