Metamath Proof Explorer


Theorem gsummatr01lem1

Description: Lemma A for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p
|- P = ( Base ` ( SymGrp ` N ) )
gsummatr01.r
|- R = { r e. P | ( r ` K ) = L }
Assertion gsummatr01lem1
|- ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N )

Proof

Step Hyp Ref Expression
1 gsummatr01.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 gsummatr01.r
 |-  R = { r e. P | ( r ` K ) = L }
3 fveq1
 |-  ( r = Q -> ( r ` K ) = ( Q ` K ) )
4 3 eqeq1d
 |-  ( r = Q -> ( ( r ` K ) = L <-> ( Q ` K ) = L ) )
5 4 2 elrab2
 |-  ( Q e. R <-> ( Q e. P /\ ( Q ` K ) = L ) )
6 5 simplbi
 |-  ( Q e. R -> Q e. P )
7 eqid
 |-  ( SymGrp ` N ) = ( SymGrp ` N )
8 7 1 symgfv
 |-  ( ( Q e. P /\ X e. N ) -> ( Q ` X ) e. N )
9 6 8 sylan
 |-  ( ( Q e. R /\ X e. N ) -> ( Q ` X ) e. N )