Metamath Proof Explorer


Theorem symgfv

Description: The function value of a permutation. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symgfv FBXAFXA

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 1 2 symgbasf FBF:AA
4 3 ffvelcdmda FBXAFXA