Metamath Proof Explorer


Theorem symgfvne

Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symgfvne FBXAYAFX=ZYXFYZ

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 1 2 symgbasf1o FBF:A1-1 ontoA
4 f1of1 F:A1-1 ontoAF:A1-1A
5 eqeq2 Z=FXFY=ZFY=FX
6 5 eqcoms FX=ZFY=ZFY=FX
7 6 adantl F:A1-1AXAYAFX=ZFY=ZFY=FX
8 simp1 F:A1-1AXAYAF:A1-1A
9 simp3 F:A1-1AXAYAYA
10 simp2 F:A1-1AXAYAXA
11 f1veqaeq F:A1-1AYAXAFY=FXY=X
12 8 9 10 11 syl12anc F:A1-1AXAYAFY=FXY=X
13 12 adantr F:A1-1AXAYAFX=ZFY=FXY=X
14 7 13 sylbid F:A1-1AXAYAFX=ZFY=ZY=X
15 14 necon3d F:A1-1AXAYAFX=ZYXFYZ
16 15 3exp1 F:A1-1AXAYAFX=ZYXFYZ
17 3 4 16 3syl FBXAYAFX=ZYXFYZ
18 17 3imp FBXAYAFX=ZYXFYZ