Metamath Proof Explorer


Theorem symgressbas

Description: The symmetric group on A characterized as structure restriction of the monoid of endofunctions on A to its base set. (Contributed by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
symgressbas.m No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
Assertion symgressbas G=M𝑠B

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 symgressbas.m Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
4 eqid f|f:A1-1 ontoA=f|f:A1-1 ontoA
5 1 4 symgval Could not format G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) with typecode |-
6 1 2 symgbas B=f|f:A1-1 ontoA
7 3 6 oveq12i Could not format ( M |`s B ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) : No typesetting found for |- ( M |`s B ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) with typecode |-
8 5 7 eqtr4i G=M𝑠B