Description: The symmetric group on A characterized as structure restriction of the monoid of endofunctions on A to its base set. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| symgressbas.m | |- M = ( EndoFMnd ` A ) |
||
| Assertion | symgressbas | |- G = ( M |`s B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | symgressbas.m | |- M = ( EndoFMnd ` A ) |
|
| 4 | eqid | |- { f | f : A -1-1-onto-> A } = { f | f : A -1-1-onto-> A } |
|
| 5 | 1 4 | symgval | |- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 6 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
| 7 | 3 6 | oveq12i | |- ( M |`s B ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 8 | 5 7 | eqtr4i | |- G = ( M |`s B ) |