| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgbas.1 |
|- G = ( SymGrp ` A ) |
| 2 |
|
symgbas.2 |
|- B = ( Base ` G ) |
| 3 |
|
eqid |
|- { x | x : A -1-1-onto-> A } = { x | x : A -1-1-onto-> A } |
| 4 |
1 3
|
symgval |
|- G = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
| 5 |
4
|
eqcomi |
|- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = G |
| 6 |
5
|
fveq2i |
|- ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) = ( Base ` G ) |
| 7 |
|
f1of |
|- ( x : A -1-1-onto-> A -> x : A --> A ) |
| 8 |
7
|
ss2abi |
|- { x | x : A -1-1-onto-> A } C_ { x | x : A --> A } |
| 9 |
|
eqid |
|- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
| 10 |
|
eqid |
|- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
| 11 |
9 10
|
efmndbasabf |
|- ( Base ` ( EndoFMnd ` A ) ) = { x | x : A --> A } |
| 12 |
8 11
|
sseqtrri |
|- { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) |
| 13 |
|
eqid |
|- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
| 14 |
13 10
|
ressbas2 |
|- ( { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) -> { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) ) |
| 15 |
12 14
|
ax-mp |
|- { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) |
| 16 |
6 15 2
|
3eqtr4ri |
|- B = { x | x : A -1-1-onto-> A } |