| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efmndbas.g |
|- G = ( EndoFMnd ` A ) |
| 2 |
|
efmndbas.b |
|- B = ( Base ` G ) |
| 3 |
1 2
|
efmndbas |
|- B = ( A ^m A ) |
| 4 |
|
mapvalg |
|- ( ( A e. _V /\ A e. _V ) -> ( A ^m A ) = { f | f : A --> A } ) |
| 5 |
4
|
anidms |
|- ( A e. _V -> ( A ^m A ) = { f | f : A --> A } ) |
| 6 |
3 5
|
eqtrid |
|- ( A e. _V -> B = { f | f : A --> A } ) |
| 7 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 8 |
7
|
eqcomi |
|- ( Base ` (/) ) = (/) |
| 9 |
|
fvprc |
|- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) |
| 10 |
1 9
|
eqtrid |
|- ( -. A e. _V -> G = (/) ) |
| 11 |
10
|
fveq2d |
|- ( -. A e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
| 12 |
2 11
|
eqtrid |
|- ( -. A e. _V -> B = ( Base ` (/) ) ) |
| 13 |
|
mapprc |
|- ( -. A e. _V -> { f | f : A --> A } = (/) ) |
| 14 |
8 12 13
|
3eqtr4a |
|- ( -. A e. _V -> B = { f | f : A --> A } ) |
| 15 |
6 14
|
pm2.61i |
|- B = { f | f : A --> A } |