Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| efmndbas.b | |- B = ( Base ` G ) |
||
| Assertion | elefmndbas | |- ( A e. V -> ( F e. B <-> F : A --> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmndbas.b | |- B = ( Base ` G ) |
|
| 3 | 1 2 | efmndbas | |- B = ( A ^m A ) |
| 4 | 3 | eleq2i | |- ( F e. B <-> F e. ( A ^m A ) ) |
| 5 | id | |- ( A e. V -> A e. V ) |
|
| 6 | 5 5 | elmapd | |- ( A e. V -> ( F e. ( A ^m A ) <-> F : A --> A ) ) |
| 7 | 4 6 | bitrid | |- ( A e. V -> ( F e. B <-> F : A --> A ) ) |