Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
efmndbas.b | |- B = ( Base ` G ) |
||
Assertion | elefmndbas | |- ( A e. V -> ( F e. B <-> F : A --> A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
2 | efmndbas.b | |- B = ( Base ` G ) |
|
3 | 1 2 | efmndbas | |- B = ( A ^m A ) |
4 | 3 | eleq2i | |- ( F e. B <-> F e. ( A ^m A ) ) |
5 | id | |- ( A e. V -> A e. V ) |
|
6 | 5 5 | elmapd | |- ( A e. V -> ( F e. ( A ^m A ) <-> F : A --> A ) ) |
7 | 4 6 | syl5bb | |- ( A e. V -> ( F e. B <-> F : A --> A ) ) |