Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 29-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
efmndbas.b | |- B = ( Base ` G ) |
||
Assertion | elefmndbas2 | |- ( F e. V -> ( F e. B <-> F : A --> A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
2 | efmndbas.b | |- B = ( Base ` G ) |
|
3 | 1 2 | efmndbasabf | |- B = { f | f : A --> A } |
4 | 3 | a1i | |- ( F e. V -> B = { f | f : A --> A } ) |
5 | 4 | eleq2d | |- ( F e. V -> ( F e. B <-> F e. { f | f : A --> A } ) ) |
6 | feq1 | |- ( f = F -> ( f : A --> A <-> F : A --> A ) ) |
|
7 | eqid | |- { f | f : A --> A } = { f | f : A --> A } |
|
8 | 6 7 | elab2g | |- ( F e. V -> ( F e. { f | f : A --> A } <-> F : A --> A ) ) |
9 | 5 8 | bitrd | |- ( F e. V -> ( F e. B <-> F : A --> A ) ) |