Metamath Proof Explorer


Theorem elefmndbas2

Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses efmndbas.g
|- G = ( EndoFMnd ` A )
efmndbas.b
|- B = ( Base ` G )
Assertion elefmndbas2
|- ( F e. V -> ( F e. B <-> F : A --> A ) )

Proof

Step Hyp Ref Expression
1 efmndbas.g
 |-  G = ( EndoFMnd ` A )
2 efmndbas.b
 |-  B = ( Base ` G )
3 1 2 efmndbasabf
 |-  B = { f | f : A --> A }
4 3 a1i
 |-  ( F e. V -> B = { f | f : A --> A } )
5 4 eleq2d
 |-  ( F e. V -> ( F e. B <-> F e. { f | f : A --> A } ) )
6 feq1
 |-  ( f = F -> ( f : A --> A <-> F : A --> A ) )
7 eqid
 |-  { f | f : A --> A } = { f | f : A --> A }
8 6 7 elab2g
 |-  ( F e. V -> ( F e. { f | f : A --> A } <-> F : A --> A ) )
9 5 8 bitrd
 |-  ( F e. V -> ( F e. B <-> F : A --> A ) )