Metamath Proof Explorer


Theorem elefmndbas

Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B = Base G
Assertion elefmndbas A V F B F : A A

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B = Base G
3 1 2 efmndbas B = A A
4 3 eleq2i F B F A A
5 id A V A V
6 5 5 elmapd A V F A A F : A A
7 4 6 syl5bb A V F B F : A A