Metamath Proof Explorer


Theorem elefmndbas

Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B=BaseG
Assertion elefmndbas AVFBF:AA

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B=BaseG
3 1 2 efmndbas B=AA
4 3 eleq2i FBFAA
5 id AVAV
6 5 5 elmapd AVFAAF:AA
7 4 6 bitrid AVFBF:AA