| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgplusg.1 |
|- G = ( SymGrp ` A ) |
| 2 |
|
symgplusg.2 |
|- B = ( A ^m A ) |
| 3 |
|
symgplusg.3 |
|- .+ = ( +g ` G ) |
| 4 |
|
f1osetex |
|- { f | f : A -1-1-onto-> A } e. _V |
| 5 |
|
eqid |
|- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 6 |
|
eqid |
|- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( EndoFMnd ` A ) ) |
| 7 |
5 6
|
ressplusg |
|- ( { f | f : A -1-1-onto-> A } e. _V -> ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) |
| 8 |
4 7
|
ax-mp |
|- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) |
| 9 |
|
eqid |
|- { f | f : A -1-1-onto-> A } = { f | f : A -1-1-onto-> A } |
| 10 |
1 9
|
symgval |
|- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 11 |
10
|
eqcomi |
|- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = G |
| 12 |
11
|
fveq2i |
|- ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( +g ` G ) |
| 13 |
8 12
|
eqtri |
|- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` G ) |
| 14 |
|
eqid |
|- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
| 15 |
|
eqid |
|- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
| 16 |
14 15
|
efmndbas |
|- ( Base ` ( EndoFMnd ` A ) ) = ( A ^m A ) |
| 17 |
2 16
|
eqtr4i |
|- B = ( Base ` ( EndoFMnd ` A ) ) |
| 18 |
14 17 6
|
efmndplusg |
|- ( +g ` ( EndoFMnd ` A ) ) = ( f e. B , g e. B |-> ( f o. g ) ) |
| 19 |
3 13 18
|
3eqtr2i |
|- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |