Metamath Proof Explorer


Theorem f1osetex

Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024) (Revised by AV, 8-Aug-2024) (Proof shortened by SN, 22-Aug-2024)

Ref Expression
Assertion f1osetex
|- { f | f : A -1-1-onto-> B } e. _V

Proof

Step Hyp Ref Expression
1 fosetex
 |-  { f | f : A -onto-> B } e. _V
2 f1ofo
 |-  ( f : A -1-1-onto-> B -> f : A -onto-> B )
3 2 ss2abi
 |-  { f | f : A -1-1-onto-> B } C_ { f | f : A -onto-> B }
4 1 3 ssexi
 |-  { f | f : A -1-1-onto-> B } e. _V