Step |
Hyp |
Ref |
Expression |
1 |
|
fsetfocdm.f |
|- F = { f | f : A --> B } |
2 |
|
fsetfocdm.s |
|- S = ( g e. F |-> ( g ` X ) ) |
3 |
|
vex |
|- g e. _V |
4 |
|
feq1 |
|- ( f = g -> ( f : A --> B <-> g : A --> B ) ) |
5 |
3 4 1
|
elab2 |
|- ( g e. F <-> g : A --> B ) |
6 |
|
ffvelrn |
|- ( ( g : A --> B /\ X e. A ) -> ( g ` X ) e. B ) |
7 |
6
|
expcom |
|- ( X e. A -> ( g : A --> B -> ( g ` X ) e. B ) ) |
8 |
5 7
|
syl5bi |
|- ( X e. A -> ( g e. F -> ( g ` X ) e. B ) ) |
9 |
8
|
imp |
|- ( ( X e. A /\ g e. F ) -> ( g ` X ) e. B ) |
10 |
9 2
|
fmptd |
|- ( X e. A -> S : F --> B ) |