Metamath Proof Explorer


Theorem fsetfcdm

Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f
|- F = { f | f : A --> B }
fsetfocdm.s
|- S = ( g e. F |-> ( g ` X ) )
Assertion fsetfcdm
|- ( X e. A -> S : F --> B )

Proof

Step Hyp Ref Expression
1 fsetfocdm.f
 |-  F = { f | f : A --> B }
2 fsetfocdm.s
 |-  S = ( g e. F |-> ( g ` X ) )
3 vex
 |-  g e. _V
4 feq1
 |-  ( f = g -> ( f : A --> B <-> g : A --> B ) )
5 3 4 1 elab2
 |-  ( g e. F <-> g : A --> B )
6 ffvelrn
 |-  ( ( g : A --> B /\ X e. A ) -> ( g ` X ) e. B )
7 6 expcom
 |-  ( X e. A -> ( g : A --> B -> ( g ` X ) e. B ) )
8 5 7 syl5bi
 |-  ( X e. A -> ( g e. F -> ( g ` X ) e. B ) )
9 8 imp
 |-  ( ( X e. A /\ g e. F ) -> ( g ` X ) e. B )
10 9 2 fmptd
 |-  ( X e. A -> S : F --> B )