Metamath Proof Explorer


Theorem fsetfcdm

Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f F=f|f:AB
fsetfocdm.s S=gFgX
Assertion fsetfcdm XAS:FB

Proof

Step Hyp Ref Expression
1 fsetfocdm.f F=f|f:AB
2 fsetfocdm.s S=gFgX
3 vex gV
4 feq1 f=gf:ABg:AB
5 3 4 1 elab2 gFg:AB
6 ffvelcdm g:ABXAgXB
7 6 expcom XAg:ABgXB
8 5 7 biimtrid XAgFgXB
9 8 imp XAgFgXB
10 9 2 fmptd XAS:FB