Metamath Proof Explorer


Theorem fsetfocdm

Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f F = f | f : A B
fsetfocdm.s S = g F g X
Assertion fsetfocdm A V X A S : F onto B

Proof

Step Hyp Ref Expression
1 fsetfocdm.f F = f | f : A B
2 fsetfocdm.s S = g F g X
3 1 2 fsetfcdm X A S : F B
4 3 adantl A V X A S : F B
5 simplr A V X A g B x A g B
6 eqid x A g = x A g
7 5 6 fmptd A V X A g B x A g : A B
8 simpll A V X A g B A V
9 8 mptexd A V X A g B x A g V
10 feq1 f = x A g f : A B x A g : A B
11 10 1 elab2g x A g V x A g F x A g : A B
12 9 11 syl A V X A g B x A g F x A g : A B
13 7 12 mpbird A V X A g B x A g F
14 fveq2 h = x A g S h = S x A g
15 14 eqeq2d h = x A g g = S h g = S x A g
16 15 adantl A V X A g B h = x A g g = S h g = S x A g
17 fveq1 g = f g X = f X
18 17 cbvmptv g F g X = f F f X
19 2 18 eqtri S = f F f X
20 19 a1i A V X A g B S = f F f X
21 fveq1 f = x A g f X = x A g X
22 21 adantl A V X A g B f = x A g f X = x A g X
23 fvexd A V X A g B x A g X V
24 20 22 13 23 fvmptd A V X A g B S x A g = x A g X
25 eqidd A V X A x A g = x A g
26 eqidd A V X A x = X g = g
27 simpr A V X A X A
28 vex g V
29 28 a1i A V X A g V
30 25 26 27 29 fvmptd A V X A x A g X = g
31 30 adantr A V X A g B x A g X = g
32 24 31 eqtr2d A V X A g B g = S x A g
33 13 16 32 rspcedvd A V X A g B h F g = S h
34 33 ralrimiva A V X A g B h F g = S h
35 dffo3 S : F onto B S : F B g B h F g = S h
36 4 34 35 sylanbrc A V X A S : F onto B