Metamath Proof Explorer


Theorem gsummatr01

Description: Lemma 1 for smadiadetlem4 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P = Base SymGrp N
gsummatr01.r R = r P | r K = L
gsummatr01.0 0 ˙ = 0 G
gsummatr01.s S = Base G
Assertion gsummatr01 G CMnd N Fin i N j N i A j S B S K N L N Q R G n N n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N K , j N L i A j Q n

Proof

Step Hyp Ref Expression
1 gsummatr01.p P = Base SymGrp N
2 gsummatr01.r R = r P | r K = L
3 gsummatr01.0 0 ˙ = 0 G
4 gsummatr01.s S = Base G
5 difsnid K N N K K = N
6 5 eqcomd K N N = N K K
7 6 3ad2ant1 K N L N Q R N = N K K
8 7 3ad2ant3 G CMnd N Fin i N j N i A j S B S K N L N Q R N = N K K
9 8 mpteq1d G CMnd N Fin i N j N i A j S B S K N L N Q R n N n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n N K K n i N , j N if i = K if j = L 0 ˙ B i A j Q n
10 9 oveq2d G CMnd N Fin i N j N i A j S B S K N L N Q R G n N n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K K n i N , j N if i = K if j = L 0 ˙ B i A j Q n
11 1 2 3 4 gsummatr01lem3 G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G K i N , j N if i = K if j = L 0 ˙ B i A j Q K
12 eqidd K N L N Q R i N , j N if i = K if j = L 0 ˙ B i A j = i N , j N if i = K if j = L 0 ˙ B i A j
13 fveq1 r = Q r K = Q K
14 13 eqeq1d r = Q r K = L Q K = L
15 14 2 elrab2 Q R Q P Q K = L
16 eqeq2 Q K = L j = Q K j = L
17 16 adantl Q P Q K = L j = Q K j = L
18 17 anbi2d Q P Q K = L i = K j = Q K i = K j = L
19 15 18 sylbi Q R i = K j = Q K i = K j = L
20 19 3ad2ant3 K N L N Q R i = K j = Q K i = K j = L
21 iftrue i = K if i = K if j = L 0 ˙ B i A j = if j = L 0 ˙ B
22 iftrue j = L if j = L 0 ˙ B = 0 ˙
23 21 22 sylan9eq i = K j = L if i = K if j = L 0 ˙ B i A j = 0 ˙
24 20 23 syl6bi K N L N Q R i = K j = Q K if i = K if j = L 0 ˙ B i A j = 0 ˙
25 24 imp K N L N Q R i = K j = Q K if i = K if j = L 0 ˙ B i A j = 0 ˙
26 simp1 K N L N Q R K N
27 1 2 gsummatr01lem1 Q R K N Q K N
28 27 ancoms K N Q R Q K N
29 28 3adant2 K N L N Q R Q K N
30 3 fvexi 0 ˙ V
31 30 a1i K N L N Q R 0 ˙ V
32 12 25 26 29 31 ovmpod K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K = 0 ˙
33 32 3ad2ant3 G CMnd N Fin i N j N i A j S B S K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K = 0 ˙
34 33 oveq2d G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G K i N , j N if i = K if j = L 0 ˙ B i A j Q K = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G 0 ˙
35 cmnmnd G CMnd G Mnd
36 35 adantr G CMnd N Fin G Mnd
37 36 3ad2ant1 G CMnd N Fin i N j N i A j S B S K N L N Q R G Mnd
38 eqid Base G = Base G
39 simp1l G CMnd N Fin i N j N i A j S B S K N L N Q R G CMnd
40 diffi N Fin N K Fin
41 40 adantl G CMnd N Fin N K Fin
42 41 3ad2ant1 G CMnd N Fin i N j N i A j S B S K N L N Q R N K Fin
43 eqidd K N L N Q R n N K i N , j N if i = K if j = L 0 ˙ B i A j = i N , j N if i = K if j = L 0 ˙ B i A j
44 eqeq1 i = n i = K n = K
45 44 adantr i = n j = Q n i = K n = K
46 eqeq1 j = Q n j = L Q n = L
47 46 ifbid j = Q n if j = L 0 ˙ B = if Q n = L 0 ˙ B
48 47 adantl i = n j = Q n if j = L 0 ˙ B = if Q n = L 0 ˙ B
49 oveq12 i = n j = Q n i A j = n A Q n
50 45 48 49 ifbieq12d i = n j = Q n if i = K if j = L 0 ˙ B i A j = if n = K if Q n = L 0 ˙ B n A Q n
51 eldifsni n N K n K
52 51 neneqd n N K ¬ n = K
53 52 iffalsed n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
54 53 adantl K N L N Q R n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
55 50 54 sylan9eqr K N L N Q R n N K i = n j = Q n if i = K if j = L 0 ˙ B i A j = n A Q n
56 eldifi n N K n N
57 56 adantl K N L N Q R n N K n N
58 simp3 K N L N Q R Q R
59 1 2 gsummatr01lem1 Q R n N Q n N
60 58 56 59 syl2an K N L N Q R n N K Q n N
61 ovexd K N L N Q R n N K n A Q n V
62 43 55 57 60 61 ovmpod K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
63 62 3ad2antl3 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
64 4 eleq2i i A j S i A j Base G
65 64 2ralbii i N j N i A j S i N j N i A j Base G
66 1 2 gsummatr01lem2 Q R n N i N j N i A j Base G n A Q n Base G
67 65 66 syl5bi Q R n N i N j N i A j S n A Q n Base G
68 58 56 67 syl2anr n N K K N L N Q R i N j N i A j S n A Q n Base G
69 68 ex n N K K N L N Q R i N j N i A j S n A Q n Base G
70 69 com13 i N j N i A j S K N L N Q R n N K n A Q n Base G
71 70 adantr i N j N i A j S B S K N L N Q R n N K n A Q n Base G
72 71 imp i N j N i A j S B S K N L N Q R n N K n A Q n Base G
73 72 3adant1 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n A Q n Base G
74 73 imp G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n A Q n Base G
75 63 74 eqeltrd G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n Base G
76 75 ralrimiva G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n Base G
77 38 39 42 76 gsummptcl G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n Base G
78 eqid + G = + G
79 38 78 3 mndrid G Mnd G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n Base G G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G 0 ˙ = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n
80 37 77 79 syl2anc G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G 0 ˙ = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n
81 1 2 3 4 gsummatr01lem4 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n i N K , j N L i A j Q n
82 81 mpteq2dva G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n N K n i N K , j N L i A j Q n
83 82 oveq2d G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N K , j N L i A j Q n
84 34 80 83 3eqtrd G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G K i N , j N if i = K if j = L 0 ˙ B i A j Q K = G n N K n i N K , j N L i A j Q n
85 10 11 84 3eqtrd G CMnd N Fin i N j N i A j S B S K N L N Q R G n N n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N K , j N L i A j Q n