Step |
Hyp |
Ref |
Expression |
1 |
|
gsummatr01.p |
|
2 |
|
gsummatr01.r |
|
3 |
|
gsummatr01.0 |
|
4 |
|
gsummatr01.s |
|
5 |
|
difsnid |
|
6 |
5
|
eqcomd |
|
7 |
6
|
3ad2ant1 |
|
8 |
7
|
3ad2ant3 |
|
9 |
8
|
mpteq1d |
|
10 |
9
|
oveq2d |
|
11 |
1 2 3 4
|
gsummatr01lem3 |
|
12 |
|
eqidd |
|
13 |
|
fveq1 |
|
14 |
13
|
eqeq1d |
|
15 |
14 2
|
elrab2 |
|
16 |
|
eqeq2 |
|
17 |
16
|
adantl |
|
18 |
17
|
anbi2d |
|
19 |
15 18
|
sylbi |
|
20 |
19
|
3ad2ant3 |
|
21 |
|
iftrue |
|
22 |
|
iftrue |
|
23 |
21 22
|
sylan9eq |
|
24 |
20 23
|
syl6bi |
|
25 |
24
|
imp |
|
26 |
|
simp1 |
|
27 |
1 2
|
gsummatr01lem1 |
|
28 |
27
|
ancoms |
|
29 |
28
|
3adant2 |
|
30 |
3
|
fvexi |
|
31 |
30
|
a1i |
|
32 |
12 25 26 29 31
|
ovmpod |
|
33 |
32
|
3ad2ant3 |
|
34 |
33
|
oveq2d |
|
35 |
|
cmnmnd |
|
36 |
35
|
adantr |
|
37 |
36
|
3ad2ant1 |
|
38 |
|
eqid |
|
39 |
|
simp1l |
|
40 |
|
diffi |
|
41 |
40
|
adantl |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
eqidd |
|
44 |
|
eqeq1 |
|
45 |
44
|
adantr |
|
46 |
|
eqeq1 |
|
47 |
46
|
ifbid |
|
48 |
47
|
adantl |
|
49 |
|
oveq12 |
|
50 |
45 48 49
|
ifbieq12d |
|
51 |
|
eldifsni |
|
52 |
51
|
neneqd |
|
53 |
52
|
iffalsed |
|
54 |
53
|
adantl |
|
55 |
50 54
|
sylan9eqr |
|
56 |
|
eldifi |
|
57 |
56
|
adantl |
|
58 |
|
simp3 |
|
59 |
1 2
|
gsummatr01lem1 |
|
60 |
58 56 59
|
syl2an |
|
61 |
|
ovexd |
|
62 |
43 55 57 60 61
|
ovmpod |
|
63 |
62
|
3ad2antl3 |
|
64 |
4
|
eleq2i |
|
65 |
64
|
2ralbii |
|
66 |
1 2
|
gsummatr01lem2 |
|
67 |
65 66
|
syl5bi |
|
68 |
58 56 67
|
syl2anr |
|
69 |
68
|
ex |
|
70 |
69
|
com13 |
|
71 |
70
|
adantr |
|
72 |
71
|
imp |
|
73 |
72
|
3adant1 |
|
74 |
73
|
imp |
|
75 |
63 74
|
eqeltrd |
|
76 |
75
|
ralrimiva |
|
77 |
38 39 42 76
|
gsummptcl |
|
78 |
|
eqid |
|
79 |
38 78 3
|
mndrid |
|
80 |
37 77 79
|
syl2anc |
|
81 |
1 2 3 4
|
gsummatr01lem4 |
|
82 |
81
|
mpteq2dva |
|
83 |
82
|
oveq2d |
|
84 |
34 80 83
|
3eqtrd |
|
85 |
10 11 84
|
3eqtrd |
|