| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummatr01.p |
|
| 2 |
|
gsummatr01.r |
|
| 3 |
|
gsummatr01.0 |
|
| 4 |
|
gsummatr01.s |
|
| 5 |
|
difsnid |
|
| 6 |
5
|
eqcomd |
|
| 7 |
6
|
3ad2ant1 |
|
| 8 |
7
|
3ad2ant3 |
|
| 9 |
8
|
mpteq1d |
|
| 10 |
9
|
oveq2d |
|
| 11 |
1 2 3 4
|
gsummatr01lem3 |
|
| 12 |
|
eqidd |
|
| 13 |
|
fveq1 |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
14 2
|
elrab2 |
|
| 16 |
|
eqeq2 |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
anbi2d |
|
| 19 |
15 18
|
sylbi |
|
| 20 |
19
|
3ad2ant3 |
|
| 21 |
|
iftrue |
|
| 22 |
|
iftrue |
|
| 23 |
21 22
|
sylan9eq |
|
| 24 |
20 23
|
biimtrdi |
|
| 25 |
24
|
imp |
|
| 26 |
|
simp1 |
|
| 27 |
1 2
|
gsummatr01lem1 |
|
| 28 |
27
|
ancoms |
|
| 29 |
28
|
3adant2 |
|
| 30 |
3
|
fvexi |
|
| 31 |
30
|
a1i |
|
| 32 |
12 25 26 29 31
|
ovmpod |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
cmnmnd |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
|
eqid |
|
| 39 |
|
simp1l |
|
| 40 |
|
diffi |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
3ad2ant1 |
|
| 43 |
|
eqidd |
|
| 44 |
|
eqeq1 |
|
| 45 |
44
|
adantr |
|
| 46 |
|
eqeq1 |
|
| 47 |
46
|
ifbid |
|
| 48 |
47
|
adantl |
|
| 49 |
|
oveq12 |
|
| 50 |
45 48 49
|
ifbieq12d |
|
| 51 |
|
eldifsni |
|
| 52 |
51
|
neneqd |
|
| 53 |
52
|
iffalsed |
|
| 54 |
53
|
adantl |
|
| 55 |
50 54
|
sylan9eqr |
|
| 56 |
|
eldifi |
|
| 57 |
56
|
adantl |
|
| 58 |
|
simp3 |
|
| 59 |
1 2
|
gsummatr01lem1 |
|
| 60 |
58 56 59
|
syl2an |
|
| 61 |
|
ovexd |
|
| 62 |
43 55 57 60 61
|
ovmpod |
|
| 63 |
62
|
3ad2antl3 |
|
| 64 |
4
|
eleq2i |
|
| 65 |
64
|
2ralbii |
|
| 66 |
1 2
|
gsummatr01lem2 |
|
| 67 |
65 66
|
biimtrid |
|
| 68 |
58 56 67
|
syl2anr |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
com13 |
|
| 71 |
70
|
adantr |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
3adant1 |
|
| 74 |
73
|
imp |
|
| 75 |
63 74
|
eqeltrd |
|
| 76 |
75
|
ralrimiva |
|
| 77 |
38 39 42 76
|
gsummptcl |
|
| 78 |
|
eqid |
|
| 79 |
38 78 3
|
mndrid |
|
| 80 |
37 77 79
|
syl2anc |
|
| 81 |
1 2 3 4
|
gsummatr01lem4 |
|
| 82 |
81
|
mpteq2dva |
|
| 83 |
82
|
oveq2d |
|
| 84 |
34 80 83
|
3eqtrd |
|
| 85 |
10 11 84
|
3eqtrd |
|