Step |
Hyp |
Ref |
Expression |
1 |
|
gsummatr01.p |
|
2 |
|
gsummatr01.r |
|
3 |
|
gsummatr01.0 |
|
4 |
|
gsummatr01.s |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
simpl |
|
8 |
7
|
3ad2ant1 |
|
9 |
|
diffi |
|
10 |
9
|
adantl |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
eqidd |
|
13 |
|
eqeq1 |
|
14 |
13
|
adantr |
|
15 |
|
eqeq1 |
|
16 |
15
|
ifbid |
|
17 |
16
|
adantl |
|
18 |
|
oveq12 |
|
19 |
14 17 18
|
ifbieq12d |
|
20 |
|
eldifsni |
|
21 |
20
|
neneqd |
|
22 |
21
|
iffalsed |
|
23 |
22
|
adantl |
|
24 |
19 23
|
sylan9eqr |
|
25 |
|
eldifi |
|
26 |
25
|
adantl |
|
27 |
1 2
|
gsummatr01lem1 |
|
28 |
27
|
expcom |
|
29 |
28 25
|
syl11 |
|
30 |
29
|
3ad2ant3 |
|
31 |
30
|
imp |
|
32 |
|
ovexd |
|
33 |
12 24 26 31 32
|
ovmpod |
|
34 |
33
|
3ad2antl3 |
|
35 |
4
|
eleq2i |
|
36 |
35
|
2ralbii |
|
37 |
1 2
|
gsummatr01lem2 |
|
38 |
25 37
|
sylan2 |
|
39 |
38
|
ex |
|
40 |
39
|
3ad2ant3 |
|
41 |
40
|
com3r |
|
42 |
36 41
|
sylbi |
|
43 |
42
|
adantr |
|
44 |
43
|
imp31 |
|
45 |
44
|
3adantl1 |
|
46 |
34 45
|
eqeltrd |
|
47 |
|
simp31 |
|
48 |
|
neldifsnd |
|
49 |
|
eqidd |
|
50 |
|
iftrue |
|
51 |
|
eqeq1 |
|
52 |
51
|
ifbid |
|
53 |
50 52
|
sylan9eq |
|
54 |
53
|
adantl |
|
55 |
|
simpr1 |
|
56 |
1 2
|
gsummatr01lem1 |
|
57 |
56
|
ancoms |
|
58 |
57
|
3adant2 |
|
59 |
58
|
adantl |
|
60 |
3
|
fvexi |
|
61 |
|
simpl |
|
62 |
|
ifexg |
|
63 |
60 61 62
|
sylancr |
|
64 |
49 54 55 59 63
|
ovmpod |
|
65 |
64
|
adantll |
|
66 |
65
|
3adant1 |
|
67 |
|
cmnmnd |
|
68 |
5 3
|
mndidcl |
|
69 |
67 68
|
syl |
|
70 |
69
|
adantr |
|
71 |
70
|
3ad2ant1 |
|
72 |
4
|
eleq2i |
|
73 |
72
|
biimpi |
|
74 |
73
|
adantl |
|
75 |
74
|
3ad2ant2 |
|
76 |
71 75
|
ifcld |
|
77 |
66 76
|
eqeltrd |
|
78 |
|
id |
|
79 |
|
fveq2 |
|
80 |
78 79
|
oveq12d |
|
81 |
5 6 8 11 46 47 48 77 80
|
gsumunsn |
|