| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummatr01.p |
|
| 2 |
|
gsummatr01.r |
|
| 3 |
|
gsummatr01.0 |
|
| 4 |
|
gsummatr01.s |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
simpl |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
|
diffi |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
eqidd |
|
| 13 |
|
eqeq1 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
ifbid |
|
| 17 |
16
|
adantl |
|
| 18 |
|
oveq12 |
|
| 19 |
14 17 18
|
ifbieq12d |
|
| 20 |
|
eldifsni |
|
| 21 |
20
|
neneqd |
|
| 22 |
21
|
iffalsed |
|
| 23 |
22
|
adantl |
|
| 24 |
19 23
|
sylan9eqr |
|
| 25 |
|
eldifi |
|
| 26 |
25
|
adantl |
|
| 27 |
1 2
|
gsummatr01lem1 |
|
| 28 |
27
|
expcom |
|
| 29 |
28 25
|
syl11 |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
30
|
imp |
|
| 32 |
|
ovexd |
|
| 33 |
12 24 26 31 32
|
ovmpod |
|
| 34 |
33
|
3ad2antl3 |
|
| 35 |
4
|
eleq2i |
|
| 36 |
35
|
2ralbii |
|
| 37 |
1 2
|
gsummatr01lem2 |
|
| 38 |
25 37
|
sylan2 |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
3ad2ant3 |
|
| 41 |
40
|
com3r |
|
| 42 |
36 41
|
sylbi |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
imp31 |
|
| 45 |
44
|
3adantl1 |
|
| 46 |
34 45
|
eqeltrd |
|
| 47 |
|
simp31 |
|
| 48 |
|
neldifsnd |
|
| 49 |
|
eqidd |
|
| 50 |
|
iftrue |
|
| 51 |
|
eqeq1 |
|
| 52 |
51
|
ifbid |
|
| 53 |
50 52
|
sylan9eq |
|
| 54 |
53
|
adantl |
|
| 55 |
|
simpr1 |
|
| 56 |
1 2
|
gsummatr01lem1 |
|
| 57 |
56
|
ancoms |
|
| 58 |
57
|
3adant2 |
|
| 59 |
58
|
adantl |
|
| 60 |
3
|
fvexi |
|
| 61 |
|
simpl |
|
| 62 |
|
ifexg |
|
| 63 |
60 61 62
|
sylancr |
|
| 64 |
49 54 55 59 63
|
ovmpod |
|
| 65 |
64
|
adantll |
|
| 66 |
65
|
3adant1 |
|
| 67 |
|
cmnmnd |
|
| 68 |
5 3
|
mndidcl |
|
| 69 |
67 68
|
syl |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
3ad2ant1 |
|
| 72 |
4
|
eleq2i |
|
| 73 |
72
|
biimpi |
|
| 74 |
73
|
adantl |
|
| 75 |
74
|
3ad2ant2 |
|
| 76 |
71 75
|
ifcld |
|
| 77 |
66 76
|
eqeltrd |
|
| 78 |
|
id |
|
| 79 |
|
fveq2 |
|
| 80 |
78 79
|
oveq12d |
|
| 81 |
5 6 8 11 46 47 48 77 80
|
gsumunsn |
|