Metamath Proof Explorer


Theorem gsummatr01lem3

Description: Lemma 1 for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P = Base SymGrp N
gsummatr01.r R = r P | r K = L
gsummatr01.0 0 ˙ = 0 G
gsummatr01.s S = Base G
Assertion gsummatr01lem3 G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G K i N , j N if i = K if j = L 0 ˙ B i A j Q K

Proof

Step Hyp Ref Expression
1 gsummatr01.p P = Base SymGrp N
2 gsummatr01.r R = r P | r K = L
3 gsummatr01.0 0 ˙ = 0 G
4 gsummatr01.s S = Base G
5 eqid Base G = Base G
6 eqid + G = + G
7 simpl G CMnd N Fin G CMnd
8 7 3ad2ant1 G CMnd N Fin i N j N i A j S B S K N L N Q R G CMnd
9 diffi N Fin N K Fin
10 9 adantl G CMnd N Fin N K Fin
11 10 3ad2ant1 G CMnd N Fin i N j N i A j S B S K N L N Q R N K Fin
12 eqidd K N L N Q R n N K i N , j N if i = K if j = L 0 ˙ B i A j = i N , j N if i = K if j = L 0 ˙ B i A j
13 eqeq1 i = n i = K n = K
14 13 adantr i = n j = Q n i = K n = K
15 eqeq1 j = Q n j = L Q n = L
16 15 ifbid j = Q n if j = L 0 ˙ B = if Q n = L 0 ˙ B
17 16 adantl i = n j = Q n if j = L 0 ˙ B = if Q n = L 0 ˙ B
18 oveq12 i = n j = Q n i A j = n A Q n
19 14 17 18 ifbieq12d i = n j = Q n if i = K if j = L 0 ˙ B i A j = if n = K if Q n = L 0 ˙ B n A Q n
20 eldifsni n N K n K
21 20 neneqd n N K ¬ n = K
22 21 iffalsed n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
23 22 adantl K N L N Q R n N K if n = K if Q n = L 0 ˙ B n A Q n = n A Q n
24 19 23 sylan9eqr K N L N Q R n N K i = n j = Q n if i = K if j = L 0 ˙ B i A j = n A Q n
25 eldifi n N K n N
26 25 adantl K N L N Q R n N K n N
27 1 2 gsummatr01lem1 Q R n N Q n N
28 27 expcom n N Q R Q n N
29 28 25 syl11 Q R n N K Q n N
30 29 3ad2ant3 K N L N Q R n N K Q n N
31 30 imp K N L N Q R n N K Q n N
32 ovexd K N L N Q R n N K n A Q n V
33 12 24 26 31 32 ovmpod K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
34 33 3ad2antl3 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = n A Q n
35 4 eleq2i i A j S i A j Base G
36 35 2ralbii i N j N i A j S i N j N i A j Base G
37 1 2 gsummatr01lem2 Q R n N i N j N i A j Base G n A Q n Base G
38 25 37 sylan2 Q R n N K i N j N i A j Base G n A Q n Base G
39 38 ex Q R n N K i N j N i A j Base G n A Q n Base G
40 39 3ad2ant3 K N L N Q R n N K i N j N i A j Base G n A Q n Base G
41 40 com3r i N j N i A j Base G K N L N Q R n N K n A Q n Base G
42 36 41 sylbi i N j N i A j S K N L N Q R n N K n A Q n Base G
43 42 adantr i N j N i A j S B S K N L N Q R n N K n A Q n Base G
44 43 imp31 i N j N i A j S B S K N L N Q R n N K n A Q n Base G
45 44 3adantl1 G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n A Q n Base G
46 34 45 eqeltrd G CMnd N Fin i N j N i A j S B S K N L N Q R n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n Base G
47 simp31 G CMnd N Fin i N j N i A j S B S K N L N Q R K N
48 neldifsnd G CMnd N Fin i N j N i A j S B S K N L N Q R ¬ K N K
49 eqidd B S K N L N Q R i N , j N if i = K if j = L 0 ˙ B i A j = i N , j N if i = K if j = L 0 ˙ B i A j
50 iftrue i = K if i = K if j = L 0 ˙ B i A j = if j = L 0 ˙ B
51 eqeq1 j = Q K j = L Q K = L
52 51 ifbid j = Q K if j = L 0 ˙ B = if Q K = L 0 ˙ B
53 50 52 sylan9eq i = K j = Q K if i = K if j = L 0 ˙ B i A j = if Q K = L 0 ˙ B
54 53 adantl B S K N L N Q R i = K j = Q K if i = K if j = L 0 ˙ B i A j = if Q K = L 0 ˙ B
55 simpr1 B S K N L N Q R K N
56 1 2 gsummatr01lem1 Q R K N Q K N
57 56 ancoms K N Q R Q K N
58 57 3adant2 K N L N Q R Q K N
59 58 adantl B S K N L N Q R Q K N
60 3 fvexi 0 ˙ V
61 simpl B S K N L N Q R B S
62 ifexg 0 ˙ V B S if Q K = L 0 ˙ B V
63 60 61 62 sylancr B S K N L N Q R if Q K = L 0 ˙ B V
64 49 54 55 59 63 ovmpod B S K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K = if Q K = L 0 ˙ B
65 64 adantll i N j N i A j S B S K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K = if Q K = L 0 ˙ B
66 65 3adant1 G CMnd N Fin i N j N i A j S B S K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K = if Q K = L 0 ˙ B
67 cmnmnd G CMnd G Mnd
68 5 3 mndidcl G Mnd 0 ˙ Base G
69 67 68 syl G CMnd 0 ˙ Base G
70 69 adantr G CMnd N Fin 0 ˙ Base G
71 70 3ad2ant1 G CMnd N Fin i N j N i A j S B S K N L N Q R 0 ˙ Base G
72 4 eleq2i B S B Base G
73 72 biimpi B S B Base G
74 73 adantl i N j N i A j S B S B Base G
75 74 3ad2ant2 G CMnd N Fin i N j N i A j S B S K N L N Q R B Base G
76 71 75 ifcld G CMnd N Fin i N j N i A j S B S K N L N Q R if Q K = L 0 ˙ B Base G
77 66 76 eqeltrd G CMnd N Fin i N j N i A j S B S K N L N Q R K i N , j N if i = K if j = L 0 ˙ B i A j Q K Base G
78 id n = K n = K
79 fveq2 n = K Q n = Q K
80 78 79 oveq12d n = K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = K i N , j N if i = K if j = L 0 ˙ B i A j Q K
81 5 6 8 11 46 47 48 77 80 gsumunsn G CMnd N Fin i N j N i A j S B S K N L N Q R G n N K K n i N , j N if i = K if j = L 0 ˙ B i A j Q n = G n N K n i N , j N if i = K if j = L 0 ˙ B i A j Q n + G K i N , j N if i = K if j = L 0 ˙ B i A j Q K