Metamath Proof Explorer


Theorem gsummatr01lem2

Description: Lemma B for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P = Base SymGrp N
gsummatr01.r R = r P | r K = L
Assertion gsummatr01lem2 Q R X N i N j N i A j Base G X A Q X Base G

Proof

Step Hyp Ref Expression
1 gsummatr01.p P = Base SymGrp N
2 gsummatr01.r R = r P | r K = L
3 simpr Q R X N X N
4 1 2 gsummatr01lem1 Q R X N Q X N
5 3 4 jca Q R X N X N Q X N
6 ovrspc2v X N Q X N i N j N i A j Base G X A Q X Base G
7 5 6 sylan Q R X N i N j N i A j Base G X A Q X Base G
8 7 ex Q R X N i N j N i A j Base G X A Q X Base G