Database
BASIC LINEAR ALGEBRA
The determinant
Laplace expansion of determinants (special case)
gsummatr01lem2
Next ⟩
gsummatr01lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsummatr01lem2
Description:
Lemma B for
gsummatr01
.
(Contributed by
AV
, 8-Jan-2019)
Ref
Expression
Hypotheses
gsummatr01.p
⊢
P
=
Base
SymGrp
⁡
N
gsummatr01.r
⊢
R
=
r
∈
P
|
r
⁡
K
=
L
Assertion
gsummatr01lem2
⊢
Q
∈
R
∧
X
∈
N
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
X
A
Q
⁡
X
∈
Base
G
Proof
Step
Hyp
Ref
Expression
1
gsummatr01.p
⊢
P
=
Base
SymGrp
⁡
N
2
gsummatr01.r
⊢
R
=
r
∈
P
|
r
⁡
K
=
L
3
simpr
⊢
Q
∈
R
∧
X
∈
N
→
X
∈
N
4
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
X
∈
N
→
Q
⁡
X
∈
N
5
3
4
jca
⊢
Q
∈
R
∧
X
∈
N
→
X
∈
N
∧
Q
⁡
X
∈
N
6
ovrspc2v
⊢
X
∈
N
∧
Q
⁡
X
∈
N
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
X
A
Q
⁡
X
∈
Base
G
7
5
6
sylan
⊢
Q
∈
R
∧
X
∈
N
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
X
A
Q
⁡
X
∈
Base
G
8
7
ex
⊢
Q
∈
R
∧
X
∈
N
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
X
A
Q
⁡
X
∈
Base
G