| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marep01ma.a |
|
| 2 |
|
marep01ma.b |
|
| 3 |
|
marep01ma.r |
|
| 4 |
|
marep01ma.0 |
|
| 5 |
|
marep01ma.1 |
|
| 6 |
|
smadiadetlem.p |
|
| 7 |
|
smadiadetlem.g |
|
| 8 |
|
madetminlem.y |
|
| 9 |
|
madetminlem.s |
|
| 10 |
|
madetminlem.t |
|
| 11 |
|
smadiadetlem.w |
|
| 12 |
|
smadiadetlem.z |
|
| 13 |
7
|
crngmgp |
|
| 14 |
3 13
|
mp1i |
|
| 15 |
1 2
|
matrcl |
|
| 16 |
15
|
simpld |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
jca |
|
| 19 |
18
|
adantr |
|
| 20 |
|
simprl |
|
| 21 |
|
simprr |
|
| 22 |
2
|
eleq2i |
|
| 23 |
22
|
biimpi |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantr |
|
| 26 |
|
eqid |
|
| 27 |
1 26
|
matecl |
|
| 28 |
20 21 25 27
|
syl3anc |
|
| 29 |
7 26
|
mgpbas |
|
| 30 |
28 29
|
eleqtrdi |
|
| 31 |
30
|
ralrimivva |
|
| 32 |
31
|
adantr |
|
| 33 |
|
crngring |
|
| 34 |
26 4
|
ring0cl |
|
| 35 |
3 33 34
|
mp2b |
|
| 36 |
35 29
|
eleqtri |
|
| 37 |
32 36
|
jctir |
|
| 38 |
|
simpr |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
|
eqid |
|
| 42 |
7 5
|
ringidval |
|
| 43 |
|
eqid |
|
| 44 |
6 41 42 43
|
gsummatr01 |
|
| 45 |
19 37 39 39 40 44
|
syl113anc |
|
| 46 |
45
|
oveq2d |
|
| 47 |
46
|
mpteq2dva |
|
| 48 |
47
|
oveq2d |
|
| 49 |
1 2 3 4 5 6 7 8 9 10 11 12
|
smadiadetlem3 |
|
| 50 |
48 49
|
eqtrd |
|