Metamath Proof Explorer


Theorem smadiadetlem4

Description: Lemma 4 for smadiadet . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
smadiadetlem.w W = Base SymGrp N K
smadiadetlem.z Z = pmSgn N K
Assertion smadiadetlem4 M B K N R p q P | q K = K Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 smadiadetlem.w W = Base SymGrp N K
12 smadiadetlem.z Z = pmSgn N K
13 7 crngmgp R CRing G CMnd
14 3 13 mp1i M B K N G CMnd
15 1 2 matrcl M B N Fin R V
16 15 simpld M B N Fin
17 16 adantr M B K N N Fin
18 14 17 jca M B K N G CMnd N Fin
19 18 adantr M B K N p q P | q K = K G CMnd N Fin
20 simprl M B K N i N j N i N
21 simprr M B K N i N j N j N
22 2 eleq2i M B M Base A
23 22 biimpi M B M Base A
24 23 adantr M B K N M Base A
25 24 adantr M B K N i N j N M Base A
26 eqid Base R = Base R
27 1 26 matecl i N j N M Base A i M j Base R
28 20 21 25 27 syl3anc M B K N i N j N i M j Base R
29 7 26 mgpbas Base R = Base G
30 28 29 eleqtrdi M B K N i N j N i M j Base G
31 30 ralrimivva M B K N i N j N i M j Base G
32 31 adantr M B K N p q P | q K = K i N j N i M j Base G
33 crngring R CRing R Ring
34 26 4 ring0cl R Ring 0 ˙ Base R
35 3 33 34 mp2b 0 ˙ Base R
36 35 29 eleqtri 0 ˙ Base G
37 32 36 jctir M B K N p q P | q K = K i N j N i M j Base G 0 ˙ Base G
38 simpr M B K N K N
39 38 adantr M B K N p q P | q K = K K N
40 simpr M B K N p q P | q K = K p q P | q K = K
41 eqid q P | q K = K = q P | q K = K
42 7 5 ringidval 1 ˙ = 0 G
43 eqid Base G = Base G
44 6 41 42 43 gsummatr01 G CMnd N Fin i N j N i M j Base G 0 ˙ Base G K N K N p q P | q K = K G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = G n N K n i N K , j N K i M j p n
45 19 37 39 39 40 44 syl113anc M B K N p q P | q K = K G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = G n N K n i N K , j N K i M j p n
46 45 oveq2d M B K N p q P | q K = K Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = Y S p R G n N K n i N K , j N K i M j p n
47 46 mpteq2dva M B K N p q P | q K = K Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n
48 47 oveq2d M B K N R p q P | q K = K Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = R p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n
49 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3 M B K N R p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n
50 48 49 eqtrd M B K N R p q P | q K = K Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n