Metamath Proof Explorer


Theorem smadiadetlem3

Description: Lemma 3 for smadiadet . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
smadiadetlem.w W = Base SymGrp N K
smadiadetlem.z Z = pmSgn N K
Assertion smadiadetlem3 M B K N R p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 smadiadetlem.w W = Base SymGrp N K
12 smadiadetlem.z Z = pmSgn N K
13 eqid Base R = Base R
14 eqid Cntz R = Cntz R
15 crngring R CRing R Ring
16 ringmnd R Ring R Mnd
17 3 15 16 mp2b R Mnd
18 17 a1i M B K N R Mnd
19 fvexd M B K N Base SymGrp N K V
20 11 19 eqeltrid M B K N W V
21 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem1 M B K N p W Y Z p R G n N K n i N K , j N K i M j p n : W Base R
22 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem2 M B K N ran p W Y Z p R G n N K n i N K , j N K i M j p n Cntz R ran p W Y Z p R G n N K n i N K , j N K i M j p n
23 eqid p W Y Z p R G n N K n i N K , j N K i M j p n = p W Y Z p R G n N K n i N K , j N K i M j p n
24 1 2 matrcl M B N Fin R V
25 24 simpld M B N Fin
26 25 adantr M B K N N Fin
27 diffi N Fin N K Fin
28 eqid SymGrp N K = SymGrp N K
29 eqid Base SymGrp N K = Base SymGrp N K
30 28 29 symgbasfi N K Fin Base SymGrp N K Fin
31 26 27 30 3syl M B K N Base SymGrp N K Fin
32 11 31 eqeltrid M B K N W Fin
33 ovexd M B K N p W Y Z p R G n N K n i N K , j N K i M j p n V
34 4 fvexi 0 ˙ V
35 34 a1i M B K N 0 ˙ V
36 23 32 33 35 fsuppmptdm M B K N finSupp 0 ˙ p W Y Z p R G n N K n i N K , j N K i M j p n
37 fveq1 q = p q K = p K
38 37 eqeq1d q = p q K = K p K = K
39 38 cbvrabv q P | q K = K = p P | p K = K
40 eqid p q P | q K = K p N K = p q P | q K = K p N K
41 6 39 11 40 symgfixf1o N Fin K N p q P | q K = K p N K : q P | q K = K 1-1 onto W
42 25 41 sylan M B K N p q P | q K = K p N K : q P | q K = K 1-1 onto W
43 13 4 14 18 20 21 22 36 42 gsumzf1o M B K N R p W Y Z p R G n N K n i N K , j N K i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n p q P | q K = K p N K
44 eqid q P | q K = K = q P | q K = K
45 eqid N K = N K
46 6 44 11 45 symgfixelsi K N p q P | q K = K p N K W
47 46 adantll M B K N p q P | q K = K p N K W
48 eqidd M B K N p q P | q K = K p N K = p q P | q K = K p N K
49 fveq2 p = y Y Z p = Y Z y
50 fveq1 p = y p n = y n
51 50 oveq2d p = y n i N K , j N K i M j p n = n i N K , j N K i M j y n
52 51 mpteq2dv p = y n N K n i N K , j N K i M j p n = n N K n i N K , j N K i M j y n
53 52 oveq2d p = y G n N K n i N K , j N K i M j p n = G n N K n i N K , j N K i M j y n
54 49 53 oveq12d p = y Y Z p R G n N K n i N K , j N K i M j p n = Y Z y R G n N K n i N K , j N K i M j y n
55 54 cbvmptv p W Y Z p R G n N K n i N K , j N K i M j p n = y W Y Z y R G n N K n i N K , j N K i M j y n
56 55 a1i M B K N p W Y Z p R G n N K n i N K , j N K i M j p n = y W Y Z y R G n N K n i N K , j N K i M j y n
57 fveq2 y = p N K Y Z y = Y Z p N K
58 fveq1 y = p N K y n = p N K n
59 fvres n N K p N K n = p n
60 58 59 sylan9eq y = p N K n N K y n = p n
61 60 oveq2d y = p N K n N K n i N K , j N K i M j y n = n i N K , j N K i M j p n
62 61 mpteq2dva y = p N K n N K n i N K , j N K i M j y n = n N K n i N K , j N K i M j p n
63 62 oveq2d y = p N K G n N K n i N K , j N K i M j y n = G n N K n i N K , j N K i M j p n
64 57 63 oveq12d y = p N K Y Z y R G n N K n i N K , j N K i M j y n = Y Z p N K R G n N K n i N K , j N K i M j p n
65 47 48 56 64 fmptco M B K N p W Y Z p R G n N K n i N K , j N K i M j p n p q P | q K = K p N K = p q P | q K = K Y Z p N K R G n N K n i N K , j N K i M j p n
66 6 9 12 copsgndif N Fin K N p q P | q K = K Y Z p N K = Y S p
67 25 66 sylan M B K N p q P | q K = K Y Z p N K = Y S p
68 67 imp M B K N p q P | q K = K Y Z p N K = Y S p
69 68 oveq1d M B K N p q P | q K = K Y Z p N K R G n N K n i N K , j N K i M j p n = Y S p R G n N K n i N K , j N K i M j p n
70 69 mpteq2dva M B K N p q P | q K = K Y Z p N K R G n N K n i N K , j N K i M j p n = p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n
71 65 70 eqtrd M B K N p W Y Z p R G n N K n i N K , j N K i M j p n p q P | q K = K p N K = p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n
72 71 oveq2d M B K N R p W Y Z p R G n N K n i N K , j N K i M j p n p q P | q K = K p N K = R p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n
73 43 72 eqtr2d M B K N R p q P | q K = K Y S p R G n N K n i N K , j N K i M j p n = R p W Y Z p R G n N K n i N K , j N K i M j p n