Metamath Proof Explorer


Theorem smadiadetlem3lem2

Description: Lemma 2 for smadiadetlem3 . (Contributed by AV, 12-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
madetminlem.y Y=ℤRHomR
madetminlem.s S=pmSgnN
madetminlem.t ·˙=R
smadiadetlem.w W=BaseSymGrpNK
smadiadetlem.z Z=pmSgnNK
Assertion smadiadetlem3lem2 MBKNranpWYZpRGnNKniNK,jNKiMjpnCntzRranpWYZpRGnNKniNK,jNKiMjpn

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 madetminlem.y Y=ℤRHomR
9 madetminlem.s S=pmSgnN
10 madetminlem.t ·˙=R
11 smadiadetlem.w W=BaseSymGrpNK
12 smadiadetlem.z Z=pmSgnNK
13 crngring RCRingRRing
14 ringcmn RRingRCMnd
15 3 13 14 mp2b RCMnd
16 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem0 MBKNpWYZpRGnNKniNK,jNKiMjpnBaseR
17 16 ralrimiva MBKNpWYZpRGnNKniNK,jNKiMjpnBaseR
18 eqid pWYZpRGnNKniNK,jNKiMjpn=pWYZpRGnNKniNK,jNKiMjpn
19 18 rnmptss pWYZpRGnNKniNK,jNKiMjpnBaseRranpWYZpRGnNKniNK,jNKiMjpnBaseR
20 17 19 syl MBKNranpWYZpRGnNKniNK,jNKiMjpnBaseR
21 eqid BaseR=BaseR
22 eqid CntzR=CntzR
23 21 22 cntzcmnss RCMndranpWYZpRGnNKniNK,jNKiMjpnBaseRranpWYZpRGnNKniNK,jNKiMjpnCntzRranpWYZpRGnNKniNK,jNKiMjpn
24 15 20 23 sylancr MBKNranpWYZpRGnNKniNK,jNKiMjpnCntzRranpWYZpRGnNKniNK,jNKiMjpn