Metamath Proof Explorer


Theorem copsgndif

Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses copsgndif.p P=BaseSymGrpN
copsgndif.s S=pmSgnN
copsgndif.z Z=pmSgnNK
Assertion copsgndif NFinKNQqP|qK=KYZQNK=YSQ

Proof

Step Hyp Ref Expression
1 copsgndif.p P=BaseSymGrpN
2 copsgndif.s S=pmSgnN
3 copsgndif.z Z=pmSgnNK
4 1 2 3 psgndif NFinKNQqP|qK=KZQNK=SQ
5 4 imp NFinKNQqP|qK=KZQNK=SQ
6 5 fveq2d NFinKNQqP|qK=KYZQNK=YSQ
7 diffi NFinNKFin
8 7 ad2antrr NFinKNQqP|qK=KNKFin
9 eqid qP|qK=K=qP|qK=K
10 eqid BaseSymGrpNK=BaseSymGrpNK
11 eqid NK=NK
12 1 9 10 11 symgfixelsi KNQqP|qK=KQNKBaseSymGrpNK
13 12 adantll NFinKNQqP|qK=KQNKBaseSymGrpNK
14 10 3 cofipsgn NKFinQNKBaseSymGrpNKYZQNK=YZQNK
15 8 13 14 syl2anc NFinKNQqP|qK=KYZQNK=YZQNK
16 elrabi QqP|qK=KQP
17 1 2 cofipsgn NFinQPYSQ=YSQ
18 16 17 sylan2 NFinQqP|qK=KYSQ=YSQ
19 18 adantlr NFinKNQqP|qK=KYSQ=YSQ
20 6 15 19 3eqtr4d NFinKNQqP|qK=KYZQNK=YSQ
21 20 ex NFinKNQqP|qK=KYZQNK=YSQ