Metamath Proof Explorer


Theorem copsgndif

Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses copsgndif.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
copsgndif.s 𝑆 = ( pmSgn ‘ 𝑁 )
copsgndif.z 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) )
Assertion copsgndif ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) → ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → ( ( 𝑌𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ( 𝑌𝑆 ) ‘ 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 copsgndif.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 copsgndif.s 𝑆 = ( pmSgn ‘ 𝑁 )
3 copsgndif.z 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) )
4 1 2 3 psgndif ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) → ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆𝑄 ) ) )
5 4 imp ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆𝑄 ) )
6 5 fveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
7 diffi ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin )
8 7 ad2antrr ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin )
9 eqid { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
10 eqid ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
11 eqid ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } )
12 1 9 10 11 symgfixelsi ( ( 𝐾𝑁𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) )
13 12 adantll ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) )
14 10 3 cofipsgn ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) → ( ( 𝑌𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) )
15 8 13 14 syl2anc ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( ( 𝑌𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) )
16 elrabi ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → 𝑄𝑃 )
17 1 2 cofipsgn ( ( 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
18 16 17 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
19 18 adantlr ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
20 6 15 19 3eqtr4d ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( ( 𝑌𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ( 𝑌𝑆 ) ‘ 𝑄 ) )
21 20 ex ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) → ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → ( ( 𝑌𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ( 𝑌𝑆 ) ‘ 𝑄 ) ) )