| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofipsgn.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 2 |
|
cofipsgn.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 3 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 4 |
|
eqid |
⊢ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 5 |
3 1 4 2
|
psgnfn |
⊢ 𝑆 Fn { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 6 |
|
difeq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 ∖ I ) = ( 𝑄 ∖ I ) ) |
| 7 |
6
|
dmeqd |
⊢ ( 𝑝 = 𝑄 → dom ( 𝑝 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑝 = 𝑄 → ( dom ( 𝑝 ∖ I ) ∈ Fin ↔ dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → 𝑄 ∈ 𝑃 ) |
| 10 |
3 1
|
sygbasnfpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 11 |
8 9 10
|
elrabd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → 𝑄 ∈ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 12 |
|
fvco2 |
⊢ ( ( 𝑆 Fn { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ∧ 𝑄 ∈ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
| 13 |
5 11 12
|
sylancr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |