Metamath Proof Explorer


Theorem cofipsgn

Description: Composition of any class Y and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses cofipsgn.p
|- P = ( Base ` ( SymGrp ` N ) )
cofipsgn.s
|- S = ( pmSgn ` N )
Assertion cofipsgn
|- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) )

Proof

Step Hyp Ref Expression
1 cofipsgn.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 cofipsgn.s
 |-  S = ( pmSgn ` N )
3 eqid
 |-  ( SymGrp ` N ) = ( SymGrp ` N )
4 eqid
 |-  { p e. P | dom ( p \ _I ) e. Fin } = { p e. P | dom ( p \ _I ) e. Fin }
5 3 1 4 2 psgnfn
 |-  S Fn { p e. P | dom ( p \ _I ) e. Fin }
6 difeq1
 |-  ( p = Q -> ( p \ _I ) = ( Q \ _I ) )
7 6 dmeqd
 |-  ( p = Q -> dom ( p \ _I ) = dom ( Q \ _I ) )
8 7 eleq1d
 |-  ( p = Q -> ( dom ( p \ _I ) e. Fin <-> dom ( Q \ _I ) e. Fin ) )
9 simpr
 |-  ( ( N e. Fin /\ Q e. P ) -> Q e. P )
10 3 1 sygbasnfpfi
 |-  ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin )
11 8 9 10 elrabd
 |-  ( ( N e. Fin /\ Q e. P ) -> Q e. { p e. P | dom ( p \ _I ) e. Fin } )
12 fvco2
 |-  ( ( S Fn { p e. P | dom ( p \ _I ) e. Fin } /\ Q e. { p e. P | dom ( p \ _I ) e. Fin } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) )
13 5 11 12 sylancr
 |-  ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) )