| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfvalfi.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnfvalfi.b |  |-  B = ( Base ` G ) | 
						
							| 3 | 1 2 | symgbasf |  |-  ( P e. B -> P : D --> D ) | 
						
							| 4 | 3 | ffnd |  |-  ( P e. B -> P Fn D ) | 
						
							| 5 | 4 | adantl |  |-  ( ( D e. Fin /\ P e. B ) -> P Fn D ) | 
						
							| 6 |  | fndifnfp |  |-  ( P Fn D -> dom ( P \ _I ) = { x e. D | ( P ` x ) =/= x } ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) = { x e. D | ( P ` x ) =/= x } ) | 
						
							| 8 |  | rabfi |  |-  ( D e. Fin -> { x e. D | ( P ` x ) =/= x } e. Fin ) | 
						
							| 9 | 8 | adantr |  |-  ( ( D e. Fin /\ P e. B ) -> { x e. D | ( P ` x ) =/= x } e. Fin ) | 
						
							| 10 | 7 9 | eqeltrd |  |-  ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) e. Fin ) |