Metamath Proof Explorer


Theorem sygbasnfpfi

Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfvalfi.g G=SymGrpD
psgnfvalfi.b B=BaseG
Assertion sygbasnfpfi DFinPBdomPIFin

Proof

Step Hyp Ref Expression
1 psgnfvalfi.g G=SymGrpD
2 psgnfvalfi.b B=BaseG
3 1 2 symgbasf PBP:DD
4 3 ffnd PBPFnD
5 4 adantl DFinPBPFnD
6 fndifnfp PFnDdomPI=xD|Pxx
7 5 6 syl DFinPBdomPI=xD|Pxx
8 rabfi DFinxD|PxxFin
9 8 adantr DFinPBxD|PxxFin
10 7 9 eqeltrd DFinPBdomPIFin