Metamath Proof Explorer


Theorem rabfi

Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion rabfi AFinxA|φFin

Proof

Step Hyp Ref Expression
1 dfrab3 xA|φ=Ax|φ
2 infi AFinAx|φFin
3 1 2 eqeltrid AFinxA|φFin